Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(11): 2135-2151.e7, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848692

RESUMEN

In response to stress, eukaryotes activate the integrated stress response (ISR) via phosphorylation of eIF2α to promote the translation of pro-survival effector genes, such as GCN4 in yeast. Complementing the ISR is the target of rapamycin (TOR) pathway, which regulates eIF4E function. Here, we probe translational control in the absence of eIF4E in Saccharomyces cerevisiae. Intriguingly, we find that loss of eIF4E leads to de-repression of GCN4 translation. In addition, we find that de-repression of GCN4 translation is accompanied by neither eIF2α phosphorylation nor reduction in initiator ternary complex (TC). Our data suggest that when eIF4E levels are depleted, GCN4 translation is de-repressed via a unique mechanism that may involve faster scanning by the small ribosome subunit due to increased local concentration of eIF4A. Overall, our findings suggest that relative levels of eIF4F components are key to ribosome dynamics and may play important roles in translational control of gene expression.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estrés Fisiológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosforilación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/genética , Biosíntesis de Proteínas , Regulación Fúngica de la Expresión Génica , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Transducción de Señal , Ribosomas/metabolismo , Ribosomas/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética
2.
J Biol Chem ; 300(5): 107290, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636664

RESUMEN

Endogenous and exogenous chemical agents are known to compromise the integrity of RNA and cause ribosome stalling and collisions. Recent studies have shown that collided ribosomes serve as sensors for multiple processes, including ribosome quality control (RQC) and the integrated stress response (ISR). Since RQC and the ISR have distinct downstream consequences, it is of great importance that organisms activate the appropriate process. We previously showed that RQC is robustly activated in response to collisions and suppresses the ISR activation. However, the molecular mechanics behind this apparent competition were not immediately clear. Here we show that Hel2 does not physically compete with factors of the ISR, but instead its ribosomal-protein ubiquitination activity, and downstream resolution of collided ribosomes, is responsible for suppressing the ISR. Introducing a mutation in the RING domain of Hel2-which inhibits its ubiquitination activity and downstream RQC but imparts higher affinity of the factor for collided ribosomes-resulted in increased activation of the ISR upon MMS-induced alkylation stress. Similarly, mutating Hel2's lysine targets in uS10, which is responsible for RQC activation, resulted in increased Gcn4 target induction. Remarkably, the entire process of RQC appears to be limited by the action of Hel2, as the overexpression of this one factor dramatically suppressed the activation of the ISR. Collectively, our data suggest that cells evolved Hel2 to bind collided ribosomes with a relatively high affinity but kept its concentration relatively low, ensuring that it gets exhausted under stress conditions that cannot be resolved by quality control processes.


Asunto(s)
Ribosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estrés Fisiológico , Ubiquitina-Proteína Ligasas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Cureus ; 15(10): e46354, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37920621

RESUMEN

Vaccination, for centuries, has been a potent preventive technique to treat morbidities. The messenger RNA (mRNA) vaccine technology is an innovative biomedical approach utilized in developing antigen-specific vaccines that can generate adaptive immune responses, triggering both humoral and cellular immunity to enhance the body's defense against specific infections. This review provides a comprehensive, comparative analysis of mRNA vaccine technology and conventional vaccines by focusing on the structures, components, and classifications. An exploratory analysis of the similarities and differences between mRNA vaccine technology and live-attenuated vaccines highlights the mechanisms by which mRNA vaccines elicit immune responses. This review extensively discusses the production, stability, synthesis, and delivery processes associated with mRNA vaccines, showcasing the advancements and technological superiority of this approach over conventional vaccine technologies. Additionally, the potential of mRNA vaccine technology as a potent alternative for the development of vaccine candidates targeting HIV and cancer is examined.

4.
Front Microbiol ; 14: 1168102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408641

RESUMEN

Probiotics are live microorganisms with various health benefits when consumed in appropriate amounts. Fermented foods are a rich source of these beneficial organisms. This study aimed to investigate the probiotic potential of lactic acid bacteria (LAB) isolated from fermented papaya (Carica papaya L.) through in vitro methods. The LAB strains were thoroughly characterized, considering their morphological, physiological, fermentative, biochemical, and molecular properties. The LAB strain's adherence and resistance to gastrointestinal conditions, as well as its antibacterial and antioxidant capabilities, were examined. Moreover, the strains were tested for susceptibility against specific antibiotics, and safety evaluations encompassed the hemolytic assay and DNase activity. The supernatant of the LAB isolate underwent organic acid profiling (LCMS). The primary objective of this study was to assess the inhibitory activity of α-amylase and α-glucosidase enzymes, both in vitro and in silico. Gram-positive strains that were catalase-negative and carbohydrate fermenting were selected for further analysis. The LAB isolate exhibited resistance to acid bile (0.3% and 1%), phenol (0.1% and 0.4%), and simulated gastrointestinal juice (pH 3-8). It demonstrated potent antibacterial and antioxidant abilities and resistance to kanamycin, vancomycin, and methicillin. The LAB strain showed autoaggregation (83%) and adhesion to chicken crop epithelial cells, buccal epithelial cells, and HT-29 cells. Safety assessments indicated no evidence of hemolysis or DNA degradation, confirming the safety of the LAB isolates. The isolate's identity was confirmed using the 16S rRNA sequence. The LAB strain Levilactobacillus brevis RAMULAB52, derived from fermented papaya, exhibited promising probiotic properties. Moreover, the isolate demonstrated significant inhibition of α-amylase (86.97%) and α-glucosidase (75.87%) enzymes. In silico studies uncovered that hydroxycitric acid, one of the organic acids derived from the isolate, interacted with crucial amino acid residues of the target enzymes. Specifically, hydroxycitric acid formed hydrogen bonds with key amino acid residues, such as GLU233 and ASP197 in α-amylase, and ASN241, ARG312, GLU304, SER308, HIS279, PRO309, and PHE311 in α-glucosidase. In conclusion, Levilactobacillus brevis RAMULAB52, isolated from fermented papaya, possesses promising probiotic properties and exhibits potential as an effective remedy for diabetes. Its resistance to gastrointestinal conditions, antibacterial and antioxidant abilities, adhesion to different cell types, and significant inhibition of target enzymes make it a valuable candidate for further research and potential application in the field of probiotics and diabetes management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...