RESUMEN
Among clinically highly efficient antiseizure medications (ASMs) there are modifiers of the presynaptic release machinery. Of them, levetiracetam and brivaracetam show a high affinity to the synaptic vesicle protein type 2 A (SV2A), whereas pregabalin and gabapentin are selective ligands for the α2δ1 subunits of the voltage-gated calcium channels. In this paper, we present recent progress in understanding the significance of presynaptic release machinery in the neurochemical mechanisms of epilepsy and ASMs. Furthermore, we discuss whether the knowledge of the basic mechanisms of the presynaptically acting ASMs might help establish a rational polytherapy for drug-resistant epilepsy.
Asunto(s)
Anticonvulsivantes , Humanos , Anticonvulsivantes/farmacología , Animales , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/efectos de los fármacosRESUMEN
Cannabidiol (CBD) appears to possess some neuroprotective properties, but experimental data are still inconsistent. Therefore, this in vitro study aimed to compare the effects of CBD in a wide range of concentrations on oxidative stress and excitotoxic-related cell damage. Results showed that low concentrations of CBD ameliorated the H2O2-evoked cell damage of primary cortical neuronal cell culture. However, higher concentrations of CBD alone (5-25 µM) decreased the viability of cortical neurons in a concentration-dependent manner and aggravated the toxic effects of hydrogen peroxide (H2O2). Neuroprotection mediated by CBD in primary neurons against H2O2 was not associated with a direct influence on ROS production nor inhibition of caspase-3, but we found protective effects of CBD at the level of mitochondrial membrane potential and DNA fragmentation. However, CBD had no protective effect on the glutamate-induced cell damage of cortical neurons, and in higher concentrations, it enhanced the toxic effects of this cell-damaging factor. Likewise, CBD, depending on its concentration, at least did not affect or even enhance cortical cellular damage exposed to oxygen-glucose deprivation (OGD). Finally, we showed that CBD in submicromolar or low micromolar concentrations significantly protected human neuronal-like SH-SY5Y cells against H2O2- and 6-hydroxydopamine (6-OHDA)-induced cell damage. Our data indicate that CBD has a dual effect on oxidative stress-induced neuronal death-in low concentrations, it is neuroprotective, but in higher ones, it may display neurotoxic activity. On the other hand, in excitotoxic-related models, CBD was ineffective or enhanced cell damage. Our data support the notion that the neuroprotective effects of CBD strongly depend on its concentration and experimental model of neuronal death.
Asunto(s)
Cannabidiol , Peróxido de Hidrógeno , Neuronas , Fármacos Neuroprotectores , Estrés Oxidativo , Cannabidiol/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/toxicidad , Fármacos Neuroprotectores/farmacología , Humanos , Animales , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratas , Línea Celular Tumoral , Células Cultivadas , Ácido Glutámico/toxicidadRESUMEN
Accumulating evidence indicates that early adverse life experiences may be involved in the pathogenesis of Alzheimer's disease (AD). Prenatal stress (PS) can affect brain maturation and neuroimmune and metabolic interactions, leading to age-dependent cognitive deficits in offspring. However, a multi-faceted cause-and-effect impact of PS on the development of cognitive deficits in the process of physiological ageing and in the APPNL-F/NL-F mouse model of Alzheimer's disease has not yet been evaluated. We have identified age-dependent cognitive learning and memory deficits using male C57BL/6 J (wild type, WT) and the knock-in APPNL-F/NL-F (KI) aged 12, 15, and 18 months. An increase in the Aß42/Aß40 ratio and mouse ApoE levels in the hippocampus and frontal cortex preceded the onset of cognitive deficits in the KI mice. Moreover, dysfunction in insulin signaling, including increased IRS-1 serine phosphorylation in both brain areas and the tyrosine phosphorylation deficit in the frontal cortex, suggested age-dependent insulin/IGF-1 resistance. Resistance was reflected by disturbances in mTOR or ERK1/2 kinase phosphorylation and excessive pro-inflammatory (TNF-α, IL-6, and IL-23) status in the KI mice. Importantly, our study has provided insights into the higher vulnerability to PS-induced exacerbation of age-dependent cognitive deficits and biochemical dysfunction in KI mice than in WT animals. We anticipate our study will lead to future investigation of a multi-faceted cause-and-effect relationship between stress during neurodevelopment and the onset of AD pathology, distinguishing it from changes in the course of dementia during normal ageing.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Femenino , Embarazo , Masculino , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Insulina , Ratones Transgénicos , Ratones Endogámicos C57BL , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismoRESUMEN
The vitamin D receptor (VDR) belongs to the nuclear receptor superfamily of transcription factors. The VDR is expressed in diverse brain regions and has been implicated in the neuroprotective, antiaging, prosurvival, and anti-inflammatory action of vitamin D. Accordingly, a relationship between vitamin D insufficiency and susceptibility to neurodegenerative diseases has been suggested. However, due to the multitargeted mechanisms of vitamin D and its often overlapping genomic and nongenomic effects, the role of the VDR in brain pathologies remains obscure. In this narrative review, we present progress in deciphering the molecular mechanism of nuclear VDR-mediated vitamin D effects on prosurvival and anti-inflammatory signaling pathway activity within the central nervous system. In line with the concept of the neurovascular unit in pathomechanisms of neurodegenerative diseases, a discussion of the role of the VDR in regulating the immune and vascular brain systems is also included. Next, we discuss the results of preclinical and clinical studies evaluating the significance of vitamin D status and the efficacy of vitamin D supplementation in the treatment of Parkinson's and Alzheimer's diseases, emphasizing the possible role of the VDR in these phenomena. Finally, the associations of some VDR polymorphisms with higher risks and severity of these neurodegenerative disorders are briefly summarized.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Receptores de Calcitriol/metabolismo , Enfermedad de Parkinson/genética , Vitamina D/metabolismo , VitaminasRESUMEN
The pharmacological treatment of epilepsy is purely symptomatic. Despite many decades of intensive research, causal treatment of this common neurologic disorder is still unavailable. Nevertheless, it is expected that advances in modern neuroscience and molecular biology tools, as well as improved animal models may accelerate designing antiepileptogenic and epilepsy-modifying drugs. Epileptogenesis triggers a vast array of genomic, epigenomic and transcriptomic changes, which ultimately lead to morphological and functional transformation of specific neuronal circuits resulting in the occurrence of spontaneous convulsive or nonconvulsive seizures. Recent decades unraveled molecular processes and biochemical signaling pathways involved in the proepileptic transformation of brain circuits including oxidative stress, apoptosis, neuroinflammatory and neurotrophic factors. The "omics" data derived from both human and animal epileptic tissues, as well as electrophysiological, imaging and neurochemical analysis identified a plethora of possible molecular targets for drugs, which could interfere with various stages of epileptogenetic cascade, including inflammatory processes and neuroplastic changes. In this narrative review, we briefly present contemporary views on the neurobiological background of epileptogenesis and discuss the advantages and disadvantages of some more promising molecular targets for antiepileptogenic pharmacotherapy.
Asunto(s)
Epilepsia , Animales , Humanos , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Epilepsia/metabolismo , Convulsiones , Transducción de SeñalRESUMEN
This study compared the neuroprotective efficacy of three antioxidants-the plant-derived carnosic acid (CA), and two synthetic free radical scavengers: edaravone (ED) and ebselen (EB)-in in vitro models of neuronal cell damage. Results showed that CA protected mouse primary neuronal cell cultures against hydrogen peroxide-induced damage more efficiently than ED or EB. The neuroprotective effects of CA were associated with attenuation of reactive oxygen species level and increased mitochondrial membrane potential but not with a reduction in caspase-3 activity. None of the tested substances was protective against glutamate or oxygen-glucose deprivation-evoked neuronal cell damage, and EB even increased the detrimental effects of these insults. Further experiments using the human neuroblastoma SH-SY5Y cells showed that CA but not ED or EB attenuated the cell damage induced by hydrogen peroxide and that the composition of culture medium is the critical factor in evaluating neuroprotective effects in this model. Our data indicate that the neuroprotective potential of CA, ED, and EB may be revealed in vitro only under specific conditions, with their rather narrow micromolar concentrations, relevant cellular model, type of toxic agent, and exposure time. Nevertheless, of the three compounds tested, CA displayed the most consistent neuroprotective effects.
Asunto(s)
Abietanos , Isoindoles , Neuroblastoma , Fármacos Neuroprotectores , Compuestos de Organoselenio , Humanos , Animales , Ratones , Edaravona/farmacología , Fármacos Neuroprotectores/farmacología , Peróxido de Hidrógeno/farmacología , Azoles/farmacología , Ácido GlutámicoRESUMEN
Ischemic stroke is one of the major causes of death and permanent disability worldwide. The only efficient treatment to date is anticoagulant therapy and thrombectomy, which enable restitution of blood flow to ischemic tissues. Numerous promising neuroprotectants have failed in clinical trials. Given the complex pathomechanism of stroke, a multitarget pharmacotherapy seems a more rational approach in stroke prevention and treatment than drugs acting on single molecular targets. Recently, vitamin D3 has emerged as a potential treatment adjunct for ischemic stroke, as it interferes with the key prosurvival pathways and shows neuroprotective, anti-inflammatory, regenerative and anti-aging properties in both neuronal and vascular tissue. Moreover, the stimulatory effect of vitamin D3 on brain-derived neurotrophic factor (BDNF) signaling and neuroplasticity may play a role not only in the recovery of neurological functions, but also in ameliorating post-stroke depression and anxiety. This narrative review presents advances in research on the biochemical mechanisms of stroke-related brain damage, and the genomic and non-genomic effects of vitamin D3 which may interfere with diverse cell death signaling pathways. Next, we discuss the results of in vitro and in vivo experimental studies on the neuroprotective potential of 1alpha,25-dihydroxyvitamin D3 (calcitriol) in brain ischemia models. Finally, the outcomes of clinical trials on vitamin D3 efficiency in ischemic stroke patients are briefly reviewed. Despite the mixed results of the clinical trials, it appears that vitamin D3 still holds promise in preventing or ameliorating neurological and psychiatric consequences of ischemic stroke and certainly deserves further study.
RESUMEN
Neurodegenerative diseases are the most frequent chronic, age-associated neurological pathologies having a major impact on the patient's quality of life. Despite a heavy medical, social and economic burden they pose, no causative treatment is available for these diseases. Among the important pathogenic factors contributing to neuronal loss during neurodegeneration is elevated oxidative stress resulting from a disturbed balance between endogenous prooxidant and antioxidant systems. For many years, it was thought that increased oxidative stress was a cause of neuronal cell death executed via an apoptotic mechanism. However, in recent years it has been postulated that rather programmed necrosis (necroptosis) is the key form of neuronal death in the course of neurodegenerative diseases. Such assumption was supported by biochemical and morphological features of the dying cells as well as by the fact that various necroptosis inhibitors were neuroprotective in cellular and animal models of neurodegenerative diseases. In this review, we discuss the relationship between oxidative stress and RIP1-dependent necroptosis and apoptosis in the context of the pathomechanism of neurodegenerative disorders. Based on the published data mainly from cellular models of neurodegeneration linking oxidative stress and necroptosis, we postulate that administration of multipotential neuroprotectants with antioxidant and antinecroptotic properties may constitute an efficient pharmacotherapeutic strategy for the treatment of neurodegenerative diseases.
RESUMEN
Accumulating evidence indicates a pivotal role for chronic inflammatory processes in the pathogenesis of neurodegenerative and psychiatric disorders. G protein-coupled formyl peptide receptor 2 (FPR2) mediates pro-inflammatory or anti-/pro-resolving effects upon stimulation with biased agonists. We aimed to evaluate the effects of a new FPR2 ureidopropanamide agonist, compound MR-39, on neuroinflammatory processes in organotypic hippocampal cultures (OHCs) derived from control (WT) and knockout FPR2-/- mice (KO) exposed to bacterial endotoxin (lipopolysaccharide; LPS). Higher LPS-induced cytokine expression and basal release were observed in KO FPR2 cultures than in WT cultures, suggesting that a lack of FPR2 enhances the OHCs response to inflammatory stimuli. Pretreatment with MR-39 abolished some of the LPS-induced changes in the expression of genes related to the M1/M2 phenotypes (including Il-1ß, Il-6, Arg1, Il-4, Cd74, Fizz and Cx3cr1) and TNF-α, IL-1ß and IL-4 release in tissue derived from WT but not KO mice. Receptor specificity was confirmed by adding the FPR2 antagonist WRW4, which abolished the abovementioned effects of MR-39. Further biochemical data showed an increase in the phospho-p65/total p65 ratio after LPS stimulation in hippocampal tissues from both WT and KO mice, and MR-39 only reversed this effect on WT OHCs. LPS also increased TRAF6 levels, which are critical for the TLR4-mediated NF-κB pro-inflammatory responses. MR-39 attenuated the LPS-evoked increase in the levels of the NLRP3 and caspase-1 proteins in WT but not KO hippocampal cultures. Since NLRP3 may be involved in the pyroptosis, a lytic type of programmed cell death in which the main role is played by Gasdermin D (GSDMD), we examined the effects of LPS and/or MR-39 on the GSDMD protein level. LPS only increased GSDMD production in the WT tissues, and this effect was ameliorated by MR-39. Collectively, this study indicates that the new FPR2 agonist efficiently abrogates LPS-induced neuroinflammation in an ex vivo model, as evidenced by a decrease in pro-inflammatory cytokine expression and release as well as the downregulation of NLRP3 inflammasome-related pathways.
Asunto(s)
Antiinflamatorios/farmacología , Hipocampo/efectos de los fármacos , Receptores de Formil Péptido/agonistas , Animales , Citocinas/efectos de los fármacos , Hipocampo/metabolismo , Inflamasomas/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Técnicas de Cultivo de ÓrganosRESUMEN
Finding effective neuroprotective strategies to combat various neurodegenerative disorders still remain a clinically unmet need. Methyl caffeate (MC), a naturally occurring ester of caffeic acid, possesses antioxidant and anti-inflammatory activities; however, its role in neuroprotection is less investigated. In order to better characterize neuroprotective properties of MC, we tested its effectiveness in various models of neuronal cell injury in human neuroblastoma SH-SY5Y cells and in mouse primary neuronal cell cultures. MC at micromolar concentrations attenuated neuronal cell damage induced by hydrogen peroxide (H2O2) in undifferentiated and neuronal differentiated SH-SY5Y cells as well as in primary cortical neurons. This effect was associated with inhibition of both caspase-3 and cathepsin D but without involvement of the PI3-K/Akt pathway. MC was neuroprotective when given before and during but not after the induction of cell damage by H2O2. Moreover, MC was protective against 6-OHDA-evoked neurotoxicity in neuronal differentiated SH-SY5Y cells via inhibition of necrotic and apoptotic processes. On the other hand, MC was ineffective in models of excitotoxicity (induced by glutamate or oxygen-glucose deprivation) and even moderately augmented cytotoxic effects of the classical apoptotic inducer, staurosporine. Finally, in undifferentiated neuroblastoma cells MC at higher concentrations (above 50 microM) induced cell death and when combined with the chemotherapeutic agent, doxorubicin, it increased the cell damaging effects of the latter compound. Thus, neuroprotective properties of MC appear to be limited to certain models of neurotoxicity and depend on its concentrations and time of administration.
Asunto(s)
Ácidos Cafeicos/farmacología , Caspasa 3/metabolismo , Inhibidores de Caspasas/farmacología , Catepsina D/antagonistas & inhibidores , Peróxido de Hidrógeno/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de Proteasas/farmacologíaRESUMEN
INTRODUCTION: Depression remains a major cause of morbidity worldwide; consequently, there is a need in neuropsychiatry for new antidepressants with a rapid onset of action. Intranasal administration of antidepressants is an attractive and promising approach to the treatment of mental disorders, as this route is noninvasive, offers a fast onset of action and improved drug bioavailability, allows a drug dose reduction, as well as gives the possibility to bypass the blood-brain barrier and reduce the number of systemic side effects. AREAS COVERED: This review is a comprehensive discussion of the available intranasal drugs that have found application as antidepressants. The results of relevant clinical studies are presented. Additionally, the use of nanotechnology-based formulations for enhancing the intranasal delivery of antidepressants is briefly described. EXPERT OPINION: Intranasal drug delivery has a huge potential for antidepressant administration, but its use in the treatment of central nervous system disorders is currently very limited. The nasal route of antidepressant delivery is noninvasive, improves drug bioavailability, as well as allows to overcome the problem with the blood-brain barrier, gastrointestinal absorption, and first-pass metabolism. In our opinion, fast-acting intranasal antidepressants will be widely used in the treatment of mental disorders in the future.
Asunto(s)
Antidepresivos/administración & dosificación , Depresión/tratamiento farmacológico , Diseño de Fármacos , Administración Intranasal , Animales , Antidepresivos/efectos adversos , Antidepresivos/farmacocinética , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Humanos , Distribución TisularRESUMEN
BACKGROUND: Due to unmet clinical needs for efficient drugs with a rapid onset of antidepressant effects, we aimed to evaluate the efficacy of single-dose ketamine in different subgroups of patients with major depression and establish whether repeated ketamine administration could be a viable strategy to maintain treatment gains. METHODS: Electronic databases (Medline via PubMed, Embase, Cochrane Library, Trip Database) were systematically searched until February 22, 2019, for published peer-reviewed randomized controlled trials (RCTs) concerning a single and repeated administration of ketamine in patients with major depression. All relevant RCTs were selected and critically appraised, and a meta-analysis of eligible studies was performed. RESULTS: A total of 20 studies were included in the meta-analysis. The largest effect of ketamine vs. controls in reducing depressive symptoms was observed at 24 h (SMD = - 0.89; 95% CI - 1.24; - 0.53; p < 0.00001); however, a significant difference was shown for up to 7 days after a single dose. Significant differences compared with controls were observed for up to 7 days in treatment-resistant patients and when ketamine was added to ongoing antidepressant treatment, while there were no significant differences at 7 days when ketamine was used as monotherapy. In patients with major depression, initial antidepressant effects of ketamine were maintained during repeated dosing. At 2-3 weeks of repeated ketamine treatment, significant reduction of depression severity scores was observed: SMD = - 0.70; 95% CI - 1.15; - 0.25 or SMD = - 0.81; 95% CI - 1.41; - 0.20 (depending on the dosing regimen used); p ≤ 0.009 vs placebo. CONCLUSIONS: Our meta-analysis revealed rapid and robust antidepressant effects of single-dose ketamine in patients with treatment-resistant depression (TRD). By pooling data from RCTs, we showed for the first time that repeated ketamine administration is effective in sustaining initial antidepressant effects observed after single dosing.
Asunto(s)
Trastorno Bipolar/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Ketamina/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto , Antidepresivos/uso terapéuticoRESUMEN
Necroptosis, a recently discovered form of non-apoptotic programmed cell death, can be implicated in many pathological conditions including neuronal cell death. Moreover, an inhibition of this process by necrostatin-1 (Nec-1) has been shown to be neuroprotective in in vitro and in vivo models of cerebral ischemia. However, the involvement of this type of cell death in oxidative stress-induced neuronal cell damage is less recognized. Therefore, we tested the effects of Nec-1, an inhibitor of necroptosis, in the model of hydrogen peroxide (H2O2)-induced cell damage in human neuroblastoma SH-SY5Y and murine hippocampal HT-22 cell lines. The data showed that Nec-1 (10-40 µM) attenuated the cell death induced by H2O2 in undifferentiated (UN-) and neuronal differentiated (RA-) SH-SY5Y cells with a higher efficacy in the former cell type. Moreover, Nec-1 partially reduced cell damage induced by 6-hydroxydopamine in UN- and RA-SH-SY5Y cells. The protective effect of Nec-1 was of similar magnitude as the effect of a caspase-3 inhibitor in both cell phenotypes and this effect were not potentiated after combined treatment. Furthermore, the non-specific apoptosis and necroptosis inhibitor curcumin augmented the beneficial effect of Nec-1 against H2O2-evoked cell damage albeit only in RA-SH-SY5Y cells. Next, it was found that the mechanisms of neuroprotective effect of Nec-1 against H2O2-induced cell damage in SH-SY5Y cells involved the inhibition of lysosomal protease, cathepsin D, but not caspase-3 or calpain activities. In HT-22 cells, Nec-1 was protective in two models of oxidative stress (H2O2 and glutamate) and that effect was blocked by a caspase inhibitor. Our data showed neuroprotective effects of the necroptosis inhibitor, Nec-1, against oxidative stress-induced cell damage and pointed to involvement of cathepsin D inhibition in the mechanism of its action. Moreover, a cell type-specific interplay between necroptosis and apoptosis has been demonstrated.
Asunto(s)
Catepsina D/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Imidazoles/administración & dosificación , Indoles/administración & dosificación , Necroptosis/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Animales , Inhibidores de Caspasas/administración & dosificación , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Curcumina/administración & dosificación , Humanos , Peróxido de Hidrógeno/administración & dosificación , RatonesRESUMEN
The kynurenine pathway (KP), a major route of tryptophan catabolism, may be associated with the pathophysiology of depressive disorders. KP is responsible for ca. 99% of brain tryptophan metabolism via its degradation to kynurenine (KYN) catalyzed by indoleamine 2,3-dioxygenase (IDO). Some cytokines, such as interferon-γ (IFN-γ) and interleukin (IL)-6 are potent inducers of IDO. KYN is further converted by kynurenine aminotransferase (KAT) to the more neuroprotective kynurenic acid or by kynurenine 3-monooxygenase (KMO) to neurotoxic 3-hydroxykynurenine. The aim of the present study was to delineate whether the administration of imipramine (IMI) to rats subjected to chronic mild stress (CMS) may reverse behavioral changes induced by CMS in association with changes in immune-inflammatory markers and KP. We confirmed that the CMS procedure modeled one of the main symptoms of depression, i.e. anhedonia, and administration of IMI for 5â¯weeks resulted in a significant reduction in anhedonia in a majority of animals (CMS IMI-R animals), whereas 20% of animals did not respond to IMI treatment (CMS IMI-NR animals). We established that CMS procedure increased IFN-γ and IDO mRNA and decreased KAT II mRNA expression in the rat cortex. In the cortex and hippocampus, IMI treatment and non-responsiveness to IMI (in CMS IMI-NR animals) were associated with increased IL-6 mRNA expression. In the spleen, CMS increased production of IFN-γ and IL-6 proteins, while these cytokines were decreased by IMI in CMS IMI-R animals. Chronic IMI administration to CMS rats decreased IDO and KMO mRNA and protein expression and increased KAT II/KMO mRNA and protein ratio in IMI responders (CMS IMI-R) in comparison to CMS rats. In CMS IMI-NR rats, a significant increase in IDO mRNA expression and protein level in comparison with IMI responders was observed. Our findings indicate that resistance to therapeutic action of IMI could be explained by a deficiency of the inhibitory properties of IMI on IDO, KMO and KYN synthesis in the cortex. We conclude that the antidepressant activity of IMI may, at least in part, be explained by modulatory activities on the KAT II/KMO ratio in brain areas.
Asunto(s)
Depresión/inmunología , Resistencia a Medicamentos/inmunología , Quinurenina/inmunología , Estrés Psicológico/inmunología , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Proliferación Celular , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Citocinas/genética , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Imipramina/farmacología , Imipramina/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratas Wistar , Bazo/citología , Estrés Psicológico/tratamiento farmacológicoRESUMEN
BACKGROUND: Polydatin (PD) is a compound, originally isolated from the root and rhizome of the Chinese herb Polygonum cuspidatum. To date, various biological properties of this compound, such as analgesic, anti-pyretic or diuretic effects, have been shown. Recently, anti-oxidant and anti-inflammatory properties have been widely postulated, yet PD instability and low bioavailability limit its beneficial actions. Therefore, it has been suggested that an encapsulation process may be a promising strategy for overcoming these limitations and increasing the therapeutic efficacy of PD. METHODS: We examined the effects of PD in two forms, including free and in PD-loaded polymeric nanocapsules, on lipopolysaccharide (LPS)-induced changes in hippocampal organotypic cultures. RESULTS: Our results indicated that free and encapsulated PD diminished cell death processes and attenuated the secretion of pro-inflammatory cytokines induced by LPS administration. Additionally, PD in both forms strongly inhibited the production of nitric oxide and down-regulated the level of iNOS enzyme in LPS-stimulated hippocampal cultures. CONCLUSION: Taken together, our study showed that PD exerts anti-inflammatory and anti-oxidant properties in LPS-treated hippocampal organotypic cultures. Furthermore, we show that the encapsulation procedure preserved the features of the free form of this compound, and therefore, the polymeric nanocapsules containing PD may be used as a novel and promising delivery system in therapeutic strategies.
Asunto(s)
Antiinflamatorios/farmacología , Glucósidos/farmacología , Hipocampo/efectos de los fármacos , Lipopolisacáridos/toxicidad , Nanocápsulas/química , Fármacos Neuroprotectores/farmacología , Estilbenos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/toxicidad , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos , Glucósidos/química , Glucósidos/toxicidad , Hipocampo/inmunología , Hipocampo/patología , Nanocápsulas/toxicidad , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/toxicidad , Ratas Sprague-Dawley , Estilbenos/química , Estilbenos/toxicidad , Propiedades de Superficie , Técnicas de Cultivo de Tejidos , Pruebas de ToxicidadRESUMEN
BACKGROUND: In depression, excessive glucocorticoid action may cause maladaptive brain changes, including in the pathways controlling energy metabolism. Insulin and glucagon-like peptide-1 (GLP-1), besides regulation of glucose homeostasis, also possess neurotrophic properties. Current study was aimed at investigating the influence of prenatal stress (PS) on insulin, GLP-1 and their receptor (IR and GLP-1R) levels in the hypothalamus. GLP-1 and GLP-1R were assayed also in the hippocampus and frontal cortex - brain regions mainly affected in depression. The second objective was to determine the influence of exendin-4 and insulin on CRH promoter gene activity in in vitro conditions. METHODS: Adult male PS rats were subjected to acute stress and/or received orally glucose. Levels of hormones and their receptors were assayed with ELISA method. In vitro studies were performed on mHypoA-2/12 hypothalamic cell line, stably transfected with CRH promoter coupled with luciferase. RESULTS: PS has reduced GLP-1 and GLP-1R levels, attenuated glucose-induced increase in insulin concentration and increased the amount of phosphorylated IR in the hypothalamus of animals subjected to additional stress stimuli, and also decreased the GLP-1R level in the hippocampus. In vitro studies demonstrated that insulin is capable of increasing CRH promoter activity in the condition of stimulation of the cAMP/PKA pathway in the applied cellular model. CONCLUSION: Prenatal stress may act as a preconditioning factor, affecting the concentrations of hormones such as insulin and GLP-1 in the hypothalamus in response to adverse stimuli. The decreased GLP-1R level in the hippocampus could be linked with the disturbances in neuronal plasticity.
Asunto(s)
Depresión/fisiopatología , Péptido 1 Similar al Glucagón/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Animales , Línea Celular , Hormona Liberadora de Corticotropina/genética , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Exenatida/metabolismo , Femenino , Glucosa/metabolismo , Masculino , Ratones , Plasticidad Neuronal/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Regiones Promotoras Genéticas/genética , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/fisiopatologíaRESUMEN
The UV absorber benzophenone-3 (BP-3) is the most extensively used chemical substance in various personal care products. Despite that BP-3 exposure is widespread, knowledge about the impact of BP-3 on the brain development is negligible. The present study aimed to explore the mechanisms of prenatal exposure to BP-3 in neuronal cells, with particular emphasis on autophagy and nuclear receptors signaling as well as the epigenetic and post-translational modifications occurring in response to BP-3. To observe the impact of prenatal exposure to BP-3, we administered BP-3 to pregnant mice, and next, we isolated brain tissue from pretreated embryos for primary cell neocortical culture. Our study revealed that prenatal exposure to BP-3 (used in environmentally relevant doses) impairs autophagy in terms of BECLIN-1, MAP1LC3B, autophagosomes, and autophagy-related factors; disrupts the levels of retinoid X receptors (RXRs) and peroxisome proliferator-activated receptor gamma (PPARγ); alters epigenetic status (i.e., attenuates HDAC and sirtuin activities); inhibits post-translational modifications in terms of global sumoylation; and dysregulates expression of neurogenesis- and neurotransmitter-related genes as well as miRNAs involved in pathologies of the nervous system. Our study also showed that BP-3 has good permeability through the BBB. We strongly suggest that BP-3-evoked effects may substantiate a fetal basis of the adult onset of neurological diseases, particularly schizophrenia and Alzheimer's disease.
Asunto(s)
Autofagia/efectos de los fármacos , Benzofenonas/toxicidad , Encéfalo/patología , Epigénesis Genética , Neuronas/patología , PPAR gamma/metabolismo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/genética , Benzofenonas/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Embrión de Mamíferos/citología , Epigénesis Genética/efectos de los fármacos , Femenino , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotransmisores/metabolismo , Permeabilidad , Embarazo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores X Retinoide/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuinas/metabolismo , SumoilaciónRESUMEN
A specific activation of metabotropic glutamate receptor 7 (mGluR7) has been shown to be neuroprotective in various models of neuronal cell damage, however, its role in glia cell survival has not been studied, yet. Thus, we performed comparative experiments estimating protective effects of the mGluR7 allosteric agonist AMN082 in glia, neuronal and neuronal-glia cell cultures against various harmful stimuli. First, the transcript levels of mGluR7 and other subtypes of group II and III mGluRs in cortical neuronal, neuronal-glia and glia cell cultures have been measured by qPCR method. Next, we demonstrated that AMN082 with similar efficiency attenuated the glia cell damage evoked by staurosporine (St) and doxorubicin (Dox). The AMN082-mediated glioprotection was mGluR7-dependent and associated with decreased DNA fragmentation without involvement of caspase-3 inhibition. Moreover, the inhibitors of PI3K/Akt and MAPK/ERK1/2 pathways blocked the protective effect of AMN082. In neuronal and neuronal-glia cell cultures in the model of glutamate (Glu)- but not St-evoked cell damage, we showed a significant glia contribution to mGluR7-mediated neuroprotection. Finally, by using glia and neuronal cells derived from mGluR7+/+ and mGluR7-/- mice we demonstrated a higher cell-damaging effect of St and Dox in mGluR7-deficient glia but not in neurons (cerebellar granule cells). Our present data showed for the first time a glioprotective potential of AMN082 underlain by mechanisms involving the activation of PI3K/Akt and MAPK/ERK1/2 pathways and pro-survival role of mGluR7 in glia cells. These findings together with the confirmed neuroprotective properties of AMN082 justify further research on mGluR7-targeted therapies for various CNS disorders.
Asunto(s)
Astrocitos/citología , Astrocitos/efectos de los fármacos , Compuestos de Bencidrilo/farmacología , Supervivencia Celular/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Receptores de Glutamato Metabotrópico/agonistas , Animales , Compuestos de Bencidrilo/antagonistas & inhibidores , Caspasa 3/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/metabolismo , Técnicas de Cocultivo , Fragmentación del ADN/efectos de los fármacos , Doxorrubicina/efectos adversos , Doxorrubicina/antagonistas & inhibidores , Inhibidores Enzimáticos , Ratones Noqueados , Neuronas/efectos de los fármacos , Receptores de Glutamato Metabotrópico/biosíntesis , Receptores de Glutamato Metabotrópico/genética , Transducción de Señal , Estaurosporina/antagonistas & inhibidoresRESUMEN
An increasing body of evidence postulates that microglia are the main mediators of inflammation-related disorders, including depression. Since activated microglia produce a wide range of pro- and anti-inflammatory factors, the modulation of M1/M2 microglial polarization by antidepressants may be crucial in the treatment of depression. The current paper aimed to investigate the impact of tianeptine on the microglia's viability/death parameters, and on M1/M2 microglial activation in response to lipopolysaccharide (LPS) stimulation. Furthermore, the molecular mechanisms via which tianeptine affected the LPS-evoked changes were investigated. The results revealed that tianeptine had partially protective effects on the changes in microglia viability/death evoked by LPS. Tianeptine attenuated microglia activation by decreasing the expression of cluster of differentiation 40 (CD40), and major histocompatibility complex class II (MHC II) markers, as well as the release of pro-inflammatory factors: interleukin (IL)-1ß, IL-18, IL-6, tumor necrosis factor alpha (TNF-α), and chemokine CC motif ligand 2 (CCL2), and the production of nitric oxide and reactive oxygen species. In contrast, we did not observe an impact of tianeptine on M2 microglia measured by IL-4, IL-10, TGF-ß, and insulin-like growth factor 1 (IGF-1) expression. Moreover, we demonstrated an inhibitory effect of tianeptine on the LPS-induced activation of the nucleotide-binding oligomerization domain-like (NOD-like) receptor pyrin-containing 3 inflammasome (NLRP3) inflammasome subunits, NLRP3 and caspase-1, as well as the ability of tianeptine to reduce Toll-like receptor 4 (TLR4) levels, as well as the phosphorylation of extracellular signal-related kinases 1 and 2 (ERK1/2) and of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Collectively, we demonstrated that tianeptine has protective properties and inhibits M1 polarization, thus attenuating the production of inflammatory mediators. Moreover, we found that M1 microglia suppression may be related to the NLRP3 inflammasome and TLR4 signaling. These findings suggest that a better understanding of the multifaceted mechanisms of tianeptine action on microglia may increase the effectiveness of therapy, where inflammation is a central hallmark.
Asunto(s)
Antidepresivos Tricíclicos/farmacología , Inflamasomas/metabolismo , Microglía/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tiazepinas/farmacología , Animales , Muerte Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico/metabolismo , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
The participation of group III metabotropic glutamate receptors (mGluRs) in cancer growth and progression is still an understudied issue. Based on our recent data on high expression of mGluR8 in human neuroblastoma SH-SY5Y cells, in this study, we evaluated the effect of an mGluR8-specific positive allosteric modulator (PAM: AZ12216052) and orthosteric agonist [(S)-3,4-DCPG ((S)-3,4-dicarboxyphenylglycine)] on chemotherapeutic (doxorubicin, irinotecan or cisplatin)-evoked cell damage in undifferentiated (UN-) and retinoic acid-differentiated (RA-) SH-SY5Y cells. The data showed that AZ12216052 as well as a group III mGluR antagonist (UBP1112) but not (S)-3,4-DCPG partially inhibited the cell damage evoked by doxorubicin, irinotecan or cisplatin in UN-SH-SY5Y cells. In RA-SH-SY5Y, we observed only a modest protective effect of mGluR8 PAM. In contrast, both types of mGluR8 activators significantly enhanced toxic effects of doxorubicin and irinotecan in RA-SH-SY5Y cells. These data suggest that in undifferentiated neuroblastoma malignant cells, some mGluR8 modulators can decrease cytotoxic effects of chemotherapeutics which exclude them from the group of putative anticancer agents. On the other hand, in SH-SY5Y cells differentiated to a more mature neuron-like phenotype, that is non-malignant cells, the mGluR8 activators can aggravate the chemotherapeutic neurotoxicity which is a well-known undesired effect of these drugs. Our pharmacological data add new observations to the unexplored field of research on the role of mGluR8 in cancer, pointing to complexity of response which could be mediated by particular types of mGluR8 ligands at least in neuroblastoma cells.