Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 12: 684005, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108954

RESUMEN

We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.

2.
J Proteomics ; 227: 103925, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32736136

RESUMEN

Passage of malaria parasites through mosquitoes involves multiple developmental transitions, from gametocytes that are ingested with the blood meal, through to sporozoites that are transmitted by insect bite to the host. During the transformation from gametocyte to oocyst, the parasite forms a unique transient organelle named the crystalloid, which is involved in sporozoite formation. In Plasmodium berghei, a complex of six LCCL domain-containing proteins (LAPs) reside in the crystalloid and are required for its biogenesis. However, little else is known about the molecular mechanisms that underlie the crystalloid's role in sporogony. In this study, we have used transgenic parasites stably expressing LAP3 fused to GFP, combined with GFP affinity pulldown and high accuracy mass spectrometry, to identify an extended LAP interactome of some fifty proteins. We show that many of these are targeted to the crystalloid, including members of two protein families with CPW-WPC and pleckstrin homology-like domains, respectively. Our findings indicate that the LAPs are part of an intricate protein complex, the formation of which facilitates both crystalloid targeting and biogenesis. SIGNIFICANCE: Reducing malaria parasite transmission by mosquitoes is a key component of malaria eradication and control strategies. This study sheds important new light on the molecular composition of the crystalloid, an enigmatic parasite organelle that is essential for sporozoite formation and transmission from the insect to the vertebrate host. Our findings provide new mechanistic insight into how proteins are delivered to the crystalloid, and indicate that the molecular mechanisms that underlie crystalloid function are complex, involving several protein families unique to Plasmodium and closely related organisms. The new crystalloid proteins identified will form a useful starting point for studies aimed at unravelling how the crystalloid organelle facilitates sporogony and transmission.


Asunto(s)
Malaria , Plasmodium berghei , Animales , Soluciones Cristaloides , Humanos , Orgánulos , Proteínas Protozoarias
3.
PLoS Pathog ; 16(6): e1008640, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32569299

RESUMEN

Ubiquitylation is a common post translational modification of eukaryotic proteins and in the human malaria parasite, Plasmodium falciparum (Pf) overall ubiquitylation increases in the transition from intracellular schizont to extracellular merozoite stages in the asexual blood stage cycle. Here, we identify specific ubiquitylation sites of protein substrates in three intraerythrocytic parasite stages and extracellular merozoites; a total of 1464 sites in 546 proteins were identified (data available via ProteomeXchange with identifier PXD014998). 469 ubiquitylated proteins were identified in merozoites compared with only 160 in the preceding intracellular schizont stage, suggesting a large increase in protein ubiquitylation associated with merozoite maturation. Following merozoite invasion of erythrocytes, few ubiquitylated proteins were detected in the first intracellular ring stage but as parasites matured through trophozoite to schizont stages the apparent extent of ubiquitylation increased. We identified commonly used ubiquitylation motifs and groups of ubiquitylated proteins in specific areas of cellular function, for example merozoite pellicle proteins involved in erythrocyte invasion, exported proteins, and histones. To investigate the importance of ubiquitylation we screened ubiquitin pathway inhibitors in a parasite growth assay and identified the ubiquitin activating enzyme (UBA1 or E1) inhibitor MLN7243 (TAK-243) to be particularly effective. This small molecule was shown to be a potent inhibitor of recombinant PfUBA1, and a structural homology model of MLN7243 bound to the parasite enzyme highlights avenues for the development of P. falciparum specific inhibitors. We created a genetically modified parasite with a rapamycin-inducible functional deletion of uba1; addition of either MLN7243 or rapamycin to the recombinant parasite line resulted in the same phenotype, with parasite development blocked at the schizont stage. Nuclear division and formation of intracellular structures was interrupted. These results indicate that the intracellular target of MLN7243 is UBA1, and this activity is essential for the final differentiation of schizonts to merozoites.


Asunto(s)
Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Ubiquitina/genética
4.
Proteomes ; 8(2)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244435

RESUMEN

Microvesicle generation is an integral part of the aging process of red blood cells in vivo and in vitro. Extensive vesiculation impairs function and survival of red blood cells after transfusion, and microvesicles contribute to transfusion reactions. The triggers and mechanisms of microvesicle generation are largely unknown. In this study, we combined morphological, immunochemical, proteomic, lipidomic, and metabolomic analyses to obtain an integrated understanding of the mechanisms underlying microvesicle generation during the storage of red blood cell concentrates. Our data indicate that changes in membrane organization, triggered by altered protein conformation, constitute the main mechanism of vesiculation, and precede changes in lipid organization. The resulting selective accumulation of membrane components in microvesicles is accompanied by the recruitment of plasma proteins involved in inflammation and coagulation. Our data may serve as a basis for further dissection of the fundamental mechanisms of red blood cell aging and vesiculation, for identifying the cause-effect relationship between blood bank storage and transfusion complications, and for assessing the role of microvesicles in pathologies affecting red blood cells.

5.
EMBO Rep ; 21(3): e47832, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31951090

RESUMEN

Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form (NADP) are vital for cell function in all organisms and form cofactors to a host of enzymes in catabolic and anabolic processes. NAD(P) transhydrogenases (NTHs) catalyse hydride ion transfer between NAD(H) and NADP(H). Membrane-bound NTH isoforms reside in the cytoplasmic membrane of bacteria, and the inner membrane of mitochondria in metazoans, where they generate NADPH. Here, we show that malaria parasites encode a single membrane-bound NTH that localises to the crystalloid, an organelle required for sporozoite transmission from mosquitos to vertebrates. We demonstrate that NTH has an essential structural role in crystalloid biogenesis, whilst its enzymatic activity is required for sporozoite development. This pinpoints an essential function in sporogony to the activity of a single crystalloid protein. Its additional presence in the apicoplast of sporozoites identifies NTH as a likely supplier of NADPH for this organelle during liver infection. Our findings reveal that Plasmodium species have co-opted NTH to a variety of non-mitochondrial organelles to provide a critical source of NADPH reducing power.


Asunto(s)
Malaria/transmisión , NADP Transhidrogenasas , Animales , Mitocondrias/genética , NAD , NADP , NADP Transhidrogenasas/genética
6.
EBioMedicine ; 40: 77-91, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30594554

RESUMEN

BACKGROUND: Meningioma is the most frequent primary intracranial tumour. Surgical resection remains the main therapeutic option as pharmacological intervention is hampered by poor knowledge of their proteomic signature. There is an urgent need to identify new therapeutic targets and biomarkers of meningioma. METHODS: We performed proteomic profiling of grade I, II and III frozen meningioma specimens and three normal healthy human meninges using LC-MS/MS to analyse global proteins, enriched phosphoproteins and phosphopeptides. Differential expression and functional annotation of proteins was completed using Perseus, IPA® and DAVID. We validated differential expression of proteins and phosphoproteins by Western blot on a meningioma validation set and by immunohistochemistry. FINDINGS: We quantified 3888 proteins and 3074 phosphoproteins across all meningioma grades and normal meninges. Bioinformatics analysis revealed commonly upregulated proteins and phosphoproteins to be enriched in Gene Ontology terms associated with RNA metabolism. Validation studies confirmed significant overexpression of proteins such as EGFR and CKAP4 across all grades, as well as the aberrant activation of the downstream PI3K/AKT pathway, which seems differential between grades. Further, we validated upregulation of the total and activated phosphorylated form of the NIMA-related kinase, NEK9, involved in mitotic progression. Novel proteins identified and validated in meningioma included the nuclear proto-oncogene SET, the splicing factor SF2/ASF and the higher-grade specific protein, HK2, involved in cellular metabolism. INTERPRETATION: Overall, we generated a proteomic thesaurus of meningiomas for the identification of potential biomarkers and therapeutic targets. FUND: This study was supported by Brain Tumour Research.


Asunto(s)
Meningioma/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Proteómica , Línea Celular Tumoral , Cromatografía Liquida , Biología Computacional/métodos , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Meningioma/genética , Meningioma/patología , Mutación , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Fosfopéptidos/metabolismo , Proteómica/métodos , Proto-Oncogenes Mas , Estabilidad del ARN , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Microambiente Tumoral/genética
7.
Nat Commun ; 9(1): 1498, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643330

RESUMEN

The original version of this Article contained errors in Fig. 3. In panel a, bars from a chart depicting the percentage of antibody-positive individuals in non-infectious and infectious groups were inadvertently included in place of bars depicting the percentage of infectious individuals, as described in the Article and figure legend. However, the p values reported in the Figure and the resulting conclusions were based on the correct dataset. The corrected Fig. 3a now shows the percentage of infectious individuals in antibody-negative and -positive groups, in both the PDF and HTML versions of the Article. The incorrect and correct versions of Figure 3a are also presented for comparison in the accompanying Publisher Correction as Figure 1.The HTML version of the Article also omitted a link to Supplementary Data 6. The error has now been fixed and Supplementary Data 6 is available to download.

8.
Nat Commun ; 9(1): 558, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422648

RESUMEN

Infection with Plasmodium can elicit antibodies that inhibit parasite survival in the mosquito, when they are ingested in an infectious blood meal. Here, we determine the transmission-reducing activity (TRA) of naturally acquired antibodies from 648 malaria-exposed individuals using lab-based mosquito-feeding assays. Transmission inhibition is significantly associated with antibody responses to Pfs48/45, Pfs230, and to 43 novel gametocyte proteins assessed by protein microarray. In field-based mosquito-feeding assays the likelihood and rate of mosquito infection are significantly lower for individuals reactive to Pfs48/45, Pfs230 or to combinations of the novel TRA-associated proteins. We also show that naturally acquired purified antibodies against key transmission-blocking epitopes of Pfs48/45 and Pfs230 are mechanistically involved in TRA, whereas sera depleted of these antibodies retain high-level, complement-independent TRA. Our analysis demonstrates that host antibody responses to gametocyte proteins are associated with reduced malaria transmission efficiency from humans to mosquitoes.


Asunto(s)
Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum , Adulto , Anciano , Anciano de 80 o más Años , Burkina Faso/epidemiología , Camerún/epidemiología , Estudios de Casos y Controles , Femenino , Gambia/epidemiología , Humanos , Inmunoglobulina G/sangre , Malaria Falciparum/sangre , Masculino , Persona de Mediana Edad
9.
Mol Biochem Parasitol ; 214: 87-90, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28414172

RESUMEN

Successful sporogony of Plasmodium berghei in vector mosquitoes requires expression of a family of six modular proteins named LCCL lectin domain adhesive-like proteins (LAPs). The LAPs share a subcellular localization in the crystalloid, a unique parasite organelle that forms during ookinete development. Here, LAP interactions in P. berghei were studied using a series of parasite lines stably expressing reporter-tagged LAPs combined with affinity purification and high accuracy label free quantitative mass spectrometry. Our results show that abundant complexes containing LAP1, LAP2 and LAP3 are formed in gametocytes through high avidity interactions. Following fertilization, LAP4, LAP5 and LAP6 are recruited to this complex, a process that is facilitated by LAP1 chiefly through its scavenger receptor cysteine-rich modules. These collective findings provide new insight into the temporal and molecular dynamics of protein complex formation that lead up to, and are required for, crystalloid biogenesis and downstream sporozoite transmission of malaria parasites.


Asunto(s)
Orgánulos/metabolismo , Plasmodium berghei/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/metabolismo , Cromatografía de Afinidad , Espectrometría de Masas , Mapeo de Interacción de Proteínas
10.
Proteomes ; 5(2)2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28383478

RESUMEN

n/a.

11.
EBioMedicine ; 16: 76-86, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28126595

RESUMEN

Loss or mutation of the tumour suppressor Merlin predisposes individuals to develop multiple nervous system tumours, including schwannomas and meningiomas, sporadically or as part of the autosomal dominant inherited condition Neurofibromatosis 2 (NF2). These tumours display largely low grade features but their presence can lead to significant morbidity. Surgery and radiotherapy remain the only treatment options despite years of research, therefore an effective therapeutic is required. Unbiased omics studies have become pivotal in the identification of differentially expressed genes and proteins that may act as drug targets or biomarkers. Here we analysed the proteome and phospho-proteome of these genetically defined tumours using primary human tumour cells to identify upregulated/activated proteins and/or pathways. We identified over 2000 proteins in comparative experiments between Merlin-deficient schwannoma and meningioma compared to human Schwann and meningeal cells respectively. Using functional enrichment analysis we highlighted several dysregulated pathways and Gene Ontology terms. We identified several proteins and phospho-proteins that are more highly expressed in tumours compared to controls. Among proteins jointly dysregulated in both tumours we focused in particular on PDZ and LIM domain protein 2 (PDLIM2) and validated its overexpression in several tumour samples, while not detecting it in normal cells. We showed that shRNA mediated knockdown of PDLIM2 in both primary meningioma and schwannoma leads to significant reductions in cellular proliferation. To our knowledge, this is the first comprehensive assessment of the NF2-related meningioma and schwannoma proteome and phospho-proteome. Taken together, our data highlight several commonly deregulated factors, and indicate that PDLIM2 may represent a novel, common target for meningioma and schwannoma.


Asunto(s)
Proteínas con Dominio LIM/metabolismo , Meningioma/metabolismo , Proteínas de Microfilamentos/metabolismo , Neurilemoma/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Western Blotting , Línea Celular Tumoral , Proliferación Celular/genética , Células Cultivadas , Cromatografía Liquida , Humanos , Proteínas con Dominio LIM/genética , Meningioma/genética , Meningioma/patología , Proteínas de Microfilamentos/genética , Microscopía Confocal , Neurilemoma/genética , Neurilemoma/patología , Neurofibromina 2/deficiencia , Neurofibromina 2/genética , Fosfoproteínas/genética , Mapas de Interacción de Proteínas , Proteoma/genética , Proteómica/métodos , Interferencia de ARN , Espectrometría de Masas en Tándem
12.
Cell Rep ; 16(11): 2953-2966, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27626665

RESUMEN

Dendritic cells (DCs) play a key role in orchestrating adaptive immune responses. In human blood, three distinct subsets exist: plasmacytoid DCs (pDCs) and BDCA3+ and CD1c+ myeloid DCs. In addition, a DC-like CD16+ monocyte has been reported. Although RNA-expression profiles have been previously compared, protein expression data may provide a different picture. Here, we exploited label-free quantitative mass spectrometry to compare and identify differences in primary human DC subset proteins. Moreover, we integrated these proteomic data with existing mRNA data to derive robust cell-specific expression signatures with more than 400 differentially expressed proteins between subsets, forming a solid basis for investigation of subset-specific functions. We illustrated this by extracting subset identification markers and by demonstrating that pDCs lack caspase-1 and only express low levels of other inflammasome-related proteins. In accordance, pDCs were incapable of interleukin (IL)-1ß secretion in response to ATP.


Asunto(s)
Biomarcadores/metabolismo , Células Dendríticas/metabolismo , Inflamasomas/metabolismo , Proteómica/métodos , Caspasa 1/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Transcriptoma/genética
13.
Eur J Cell Biol ; 95(11): 465-474, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27402209

RESUMEN

Neuroblastoma is the second-most common solid tumor in children and originates from poorly differentiated neural crest-derived progenitors. Although most advanced stage metastatic neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly differentiated cells frequently arises, leading to refractory disease. A lack of insight into the molecular mechanisms that underlie neuroblastoma progression hampers the development of effective new therapies for these patients. Normal neural crest development and maturation is guided by physical interactions between the cell and its surroundings, in addition to soluble factors such as growth factors. This mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that probe the cellular environment to modulate migration, proliferation, survival and differentiation. Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a protein that maintains the progenitor state of embryonic neural crest cells, are closely associated with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics and cell-matrix interactions.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Catiónicos TRPM/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Animales , Línea Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/patología , Bases de Datos Genéticas , Humanos , Ratones , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patología , Proteínas Serina-Treonina Quinasas/genética , Canales Catiónicos TRPM/genética
14.
Mol Cell Proteomics ; 15(10): 3243-3255, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27432909

RESUMEN

An essential step in the transmission of the malaria parasite to the Anopheles vector is the transformation of the mature gametocytes into gametes in the mosquito gut, where they egress from the erythrocytes and mate to produce a zygote, which matures into a motile ookinete. Osmiophilic bodies are electron dense secretory organelles of the female gametocytes which discharge their contents during gamete formation, suggestive of a role in gamete egress. Only one protein with no functional annotation, Pfg377, is described to specifically reside in osmiophilic bodies in Plasmodium falciparum Importantly, Pfg377 defective gametocytes lack osmiophilic bodies and fail to infect mosquitoes, as confirmed here with newly produced pfg377 disrupted parasites. The unique feature of Pfg377 defective gametocytes of lacking osmiophilic bodies was here exploited to perform comparative, label free, global and affinity proteomics analyses of mutant and wild type gametocytes to identify components of these organelles. Subcellular localization studies with fluorescent reporter gene fusions and specific antibodies revealed an osmiophilic body localization for four out of five candidate gene products analyzed: the proteases PfSUB2 (subtilisin 2) and PfDPAP2 (Dipeptidyl aminopeptidase 2), the ortholog of the osmiophilic body component of the rodent malaria gametocytes PbGEST and a previously nonannotated 13 kDa protein. These results establish that osmiophilic bodies and their components are dispensable or marginally contribute (PfDPAP2) to gamete egress. Instead, this work reveals a previously unsuspected role of these organelles in P. falciparum development in the mosquito vector.


Asunto(s)
Orgánulos/metabolismo , Plasmodium falciparum/fisiología , Proteómica/métodos , Proteínas Protozoarias/análisis , Animales , Anopheles/parasitología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Femenino , Células Germinativas/metabolismo , Mutación , Proteínas Protozoarias/genética , Subtilisinas/metabolismo
15.
Nucleic Acids Res ; 44(13): 6087-101, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27298255

RESUMEN

Sexual differentiation of malaria parasites into gametocytes in the vertebrate host and subsequent gamete fertilization in mosquitoes is essential for the spreading of the disease. The molecular processes orchestrating these transitions are far from fully understood. Here, we report the first transcriptome analysis of male and female Plasmodium falciparum gametocytes coupled with a comprehensive proteome analysis. In male gametocytes there is an enrichment of proteins involved in the formation of flagellated gametes; proteins involved in DNA replication, chromatin organization and axoneme formation. On the other hand, female gametocytes are enriched in proteins required for zygote formation and functions after fertilization; protein-, lipid- and energy-metabolism. Integration of transcriptome and proteome data revealed 512 highly expressed maternal transcripts without corresponding protein expression indicating large scale translational repression in P. falciparum female gametocytes for the first time. Despite a high degree of conservation between Plasmodium species, 260 of these 'repressed transcripts' have not been previously described. Moreover, for some of these genes, protein expression is only reported in oocysts and sporozoites indicating that repressed transcripts can be partitioned into short- and long-term storage. Finally, these data sets provide an essential resource for identification of vaccine/drug targets and for further mechanistic studies.


Asunto(s)
Malaria Falciparum/genética , Plasmodium falciparum/genética , Proteoma/genética , Transcriptoma/genética , Cromatina/genética , Replicación del ADN/genética , Femenino , Gametogénesis/genética , Regulación de la Expresión Génica/genética , Humanos , Malaria Falciparum/parasitología , Masculino , Redes y Vías Metabólicas/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Biosíntesis de Proteínas , Caracteres Sexuales
16.
Blood Cells Mol Dis ; 58: 35-44, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27067487

RESUMEN

The phosphorylation status of red blood cell proteins is strongly altered during the infection by the malaria parasite Plasmodium falciparum. We identify the key phosphorylation events that occur in the erythrocyte membrane and cytoskeleton during infection, by a comparative analysis of global phospho-proteome screens between infected (obtained at schizont stage) and uninfected RBCs. The meta-analysis of reported mass spectrometry studies revealed a novel compendium of 495 phosphorylation sites in 182 human proteins with regulatory roles in red cell morphology and stability, with about 25% of these sites specific to infected cells. A phosphorylation motif analysis detected 7 unique motifs that were largely mapped to kinase consensus sequences of casein kinase II and of protein kinase A/protein kinase C. This analysis highlighted prominent roles for PKA/PKC involving 78 phosphorylation sites. We then compared the phosphorylation status of PKA (PKC) specific sites in adducin, dematin, Band 3 and GLUT-1 in uninfected RBC stimulated or not by cAMP to their phosphorylation status in iRBC. We showed cAMP-induced phosphorylation of adducin S59 by immunoblotting and we were able to demonstrate parasite-induced phosphorylation for adducin S726, Band 3 and GLUT-1, corroborating the protein phosphorylation status in our erythrocyte phosphorylation site compendium.


Asunto(s)
Eritrocitos/parasitología , Malaria Falciparum/metabolismo , Plasmodium falciparum/fisiología , Proteoma/metabolismo , Secuencia de Aminoácidos , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/análisis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/parasitología , Eritrocitos/química , Eritrocitos/metabolismo , Transportador de Glucosa de Tipo 1/análisis , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Fosforilación , Proteoma/análisis
17.
PLoS One ; 11(2): e0149637, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26889827

RESUMEN

The ß2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle.


Asunto(s)
Células Dendríticas/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Western Blotting , Antígenos CD13/metabolismo , Membrana Celular/metabolismo , Simulación por Computador , Galectina 3/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Inmunoprecipitación , Integrinas/metabolismo , Ligandos , Espectrometría de Masas , Monocitos/metabolismo , Unión Proteica , Reproducibilidad de los Resultados
18.
Proteomics ; 15(15): 2716-29, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25886026

RESUMEN

Pathology of the most lethal form of malaria is caused by Plasmodium falciparum asexual blood stages and initiated by merozoite invasion of erythrocytes. We present a phosphoproteome analysis of extracellular merozoites revealing 1765 unique phosphorylation sites including 785 sites not previously detected in schizonts. All MS data have been deposited in the ProteomeXchange with identifier PXD001684 (http://proteomecentral.proteomexchange.org/dataset/PXD001684). The observed differential phosphorylation between extra and intraerythrocytic life-cycle stages was confirmed using both phospho-site and phospho-motif specific antibodies and is consistent with the core motif [K/R]xx[pS/pT] being highly represented in merozoite phosphoproteins. Comparative bioinformatic analyses highlighted protein sets and pathways with established roles in invasion. Within the merozoite phosphoprotein interaction network a subnetwork of 119 proteins with potential roles in cellular movement and invasion was identified and suggested that it is coregulated by a further small subnetwork of protein kinase A (PKA), two calcium-dependent protein kinases (CDPKs), a phosphatidyl inositol kinase (PI3K), and a GCN2-like elF2-kinase with a predicted role in translational arrest and associated changes in the ubquitinome. To test this notion experimentally, we examined the overall ubiquitination level in intracellular schizonts versus extracellular merozoites and found it highly upregulated in merozoites. We propose that alterations in the phosphoproteome and ubiquitinome reflect a starvation-induced translational arrest as intracellular schizonts transform into extracellular merozoites.


Asunto(s)
Eritrocitos/parasitología , Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Esquizontes/metabolismo , Espacio Extracelular/parasitología , Interacciones Huésped-Parásitos , Humanos , Merozoítos/crecimiento & desarrollo , Fosforilación , Plasmodium falciparum/citología , Plasmodium falciparum/fisiología , Esquizontes/crecimiento & desarrollo
19.
J Proteomics ; 84: 132-47, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23584145

RESUMEN

SHP2/PTPN11 is a key regulator of cytokine, growth factor and integrin signaling. SHP2 influences cell survival, proliferation and differentiation by regulating major signaling pathways. Mutations in PTPN11 cause severe diseases like Noonan, LEOPARD syndrome or leukemia. Whereas several of these mutations result in altered enzymatic activity due to impaired auto-inhibition, not all disease patterns can be explained by this mechanism. In this study we analyzed altered binding properties of disease-related SHP2-mutants bearing point mutations within the SH2-domain (T42A, E139D, and R138Q). Mutants were chosen according to SPR assays, which revealed different binding properties of mutated SH2 towards phosphorylated receptor peptides. To analyze global changes in mutant binding properties we applied quantitative mass spectrometry (SILAC). Using an in vitro approach we identified overall more than 1000 protein candidates, which specifically bind to the SH2-domain of SHP2. We discovered that mutations in the SH2-domain selectively affected protein enrichment by altering the binding capacity of the SH2-domain. Mutation-dependent, enhanced or reduced exposure of SHP2 to its binding partners could have an impact on the dynamics of signaling networks. Thus, disease-associated mutants of SHP2 should not only be discussed in the context of deregulated auto-inhibition but also with respect to deregulated protein targeting of the SHP2 mutants. BIOLOGICAL SIGNIFICANCE: Using quantitative mass spectrometry based proteomics we provided evidence that disease related mutations in SHP2 domains of SHP2 are able to influence SHP2 recruitment to its targets in mutation dependent manner. We discovered that mutations in the SH2-domain selectively affected protein enrichment ratios suggesting altered binding properties of the SH2-domain. We demonstrated that mutations within SHP2, which had been attributed to affect the enzymatic activity (i.e. affect the open/close status of SHP2), also differ in respect to binding properties. Our study indicates that SHP2 mutations need to be discussed not only in terms of deregulated auto-inhibition but also with respect to deregulated protein targeting properties of the SHP2 mutants. Discovery of the new binding partners for disease-related SHP2 mutants might provide a fruitful foundation for developing strategies targeting Noonan-associated leukemia.


Asunto(s)
Leucemia/enzimología , Mutación Missense , Proteínas de Neoplasias/metabolismo , Síndrome de Noonan/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Sustitución de Aminoácidos , Células HeLa , Humanos , Leucemia/genética , Leucemia/patología , Proteínas de Neoplasias/genética , Síndrome de Noonan/genética , Síndrome de Noonan/patología , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Dominios Homologos src
20.
Cell Host Microbe ; 13(1): 29-41, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23332154

RESUMEN

Human complement is a first line defense against infection in which circulating proteins initiate an enzyme cascade on the microbial surface that leads to phagocytosis and lysis. Various pathogens evade complement recognition by binding to regulator proteins that protect host cells from complement activation. We show that emerging gametes of the malaria parasite Plasmodium falciparum bind the host complement regulator factor H (FH) following transmission to the mosquito to protect from complement-mediated lysis by the blood meal. Human complement is active in the mosquito midgut for approximately 1 hr postfeeding. During this period, the gamete surface protein PfGAP50 binds to FH and uses surface-bound FH to inactivate the complement protein C3b. Loss of FH-mediated protection, either through neutralization of FH or blockade of PfGAP50, significantly impairs gametogenesis and inhibits parasite transmission to the mosquito. Thus, Plasmodium co-opts the protective host protein FH to evade complement-mediated lysis within the mosquito midgut.


Asunto(s)
Complemento C3/inmunología , Factor H de Complemento/inmunología , Culicidae/inmunología , Insectos Vectores/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Animales , Culicidae/parasitología , Culicidae/fisiología , Sistema Digestivo/inmunología , Sistema Digestivo/parasitología , Femenino , Células Germinativas/crecimiento & desarrollo , Células Germinativas/inmunología , Interacciones Huésped-Parásitos , Humanos , Insectos Vectores/parasitología , Insectos Vectores/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...