Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 2024 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-39425769

RESUMEN

Inhibitory neurotransmission mediated by γ-aminobutyric acid (GABA) plays an important role in maintaining body homeostasis. Disturbances in GABA signaling are implicated in a multitude of neurologic and psychiatric conditions, including epilepsy, ischemia, anxiety, depression, insomnia, and mood disorders. Clinically relevant increases in GABA neurotransmitter level can be achieved by inhibition of its uptake into presynaptic neurons and surrounding glial cells, driven by GABA transporters (GAT1, BGT1, GAT2, and GAT3). Herein, we focused on the search for inhibitors of the BGT1 transporter which is understudied and for which the therapeutic potential of its inhibition is partly unknown. We applied multilevel virtual screening to identify compounds with inhibitory properties. Among selected hits, compound 9 was shown to be a preferential inhibitor of BGT1 (IC50 13.9 µM). The compound also revealed some inhibitory activity against GAT3 (4x lower) while showing no or low activity (IC50 > 100 µM) toward GAT1 and GAT2, respectively. The predicted binding mode of compound 9 was confirmed by mutagenesis studies on E52A, E52Y, Q299L, and E52A+Q299L human BGT1 mutants. Subsequent evaluation showed that the selected hit displayed no affinity toward major GABAA receptor subtypes. Moreover, it was nontoxic when tested on normal human astrocytes and even showed some neuroprotective activity in SH-SY5Y cells. Compound 9 is considered a promising candidate for further evaluation of the therapeutic potential of BGT1 transporter inhibition and the development of novel inhibitors.

2.
Int J Mol Sci ; 25(19)2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39408617

RESUMEN

The serotonin 5-HT6 receptor (5-HT6R), expressed almost exclusively in the brain, affects the Cdk5 signaling as well as the mTOR pathway. Due to the association of 5-HT6R signaling with pathways involved in cancer progression, we decided to check the usefulness of 5-HT6R ligands in the treatment of CNS tumors. For this purpose, a new group of low-base 5-HT6R ligands was developed, belonging to arylsulfonamide derivatives of cyclic arylguanidines. The selected group of molecules was also tested for their antiproliferative activity on astrocytoma (1321N1) and glioblastoma (U87MG, LN-229, U-251) cell lines. Some of the molecules were subjected to ADMET tests in vitro, including lipophilicity, drug binding to plasma proteins, affinity for phospholipids, drug-drug interaction (DDI), the penetration of the membrane (PAMPA), metabolic stability, and hepatotoxicity as well as in vivo cardiotoxicity in the Danio rerio model. Two antagonists with an affinity constant Ki < 50 nM (PR 68Ki = 37 nM) were selected. These compounds were characterized by very high selectivity. An analysis of pharmacokinetic parameters for the lead compound PR 68 confirmed favorable properties for administration, including passive diffusion and acceptable metabolic stability (metabolized in 49%, MLMs). The compound did not exhibit the potential for drug-drug interactions.


Asunto(s)
Proliferación Celular , Guanidinas , Receptores de Serotonina , Humanos , Receptores de Serotonina/metabolismo , Proliferación Celular/efectos de los fármacos , Ligandos , Línea Celular Tumoral , Animales , Guanidinas/farmacología , Guanidinas/química , Pez Cebra , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad
3.
ACS Chem Neurosci ; 15(17): 3181-3201, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39158934

RESUMEN

In the pathogenesis of Alzheimer's disease, the overexpression of glycogen synthase kinase-3ß (GSK-3ß) stands out due to its multifaced nature, as it contributes to the promotion of amyloid ß and tau protein accumulation, as well as neuroinflammatory processes. Therefore, in the present study, we have designed, synthesized, and evaluated a new series of GSK-3ß inhibitors based on the N-(pyridin-2-yl)cyclopropanecarboxamide scaffold. We identified compound 36, demonstrating an IC50 of 70 nM against GSK-3ß. Subsequently, through crystallography studies and quantum mechanical analysis, we elucidated its binding mode and identified the structural features crucial for interactions with the active site of GSK-3ß, thereby understanding its inhibitory potency. Compound 36 was effective in the cellular model of hyperphosphorylated tau-induced neurodegeneration, where it restored cell viability after okadaic acid treatment and showed anti-inflammatory activity in the LPS model, significantly reducing NO, IL-6, and TNF-α release. In ADME-tox in vitro studies, we confirmed the beneficial profile of 36, including high permeability in PAMPA (Pe equals 9.4) and high metabolic stability in HLMs as well as lack of significant interactions with isoforms of the CYP enzymes and lack of considerable cytotoxicity on selected cell lines (IC50 > 100 µM on HT-22 cells and 89.3 µM on BV-2 cells). Based on promising pharmacological activities and favorable ADME-tox properties, compound 36 may be considered a promising candidate for in vivo research as well as constitute a reliable starting point for further studies.


Asunto(s)
Antiinflamatorios , Glucógeno Sintasa Quinasa 3 beta , Fármacos Neuroprotectores , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Humanos , Ratones , Supervivencia Celular/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Proteínas tau/metabolismo
4.
ACS Chem Neurosci ; 15(17): 3228-3256, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166702

RESUMEN

We developed a focused series of original phenyl-glycinamide derivatives which showed potent activity across in vivo mouse seizure models, namely, maximal electroshock (MES) and 6 Hz (using both 32 and 44 mA current intensities) seizure models. Following intraperitoneal (i.p.) administration, compound (R)-32, which was identified as a lead molecule, demonstrated potent protection against all seizure models with ED50 values of 73.9 mg/kg (MES test), 18.8 mg/kg (6 Hz, 32 mA test), and 26.5 mg/kg (6 Hz, 44 mA test). Furthermore, (R)-32 demonstrated efficacy in both the PTZ-induced kindling paradigm and the ivPTZ seizure threshold test. The expression of neurotrophic factors, such as mature brain-derived neurotrophic factor (mBDNF) and nerve growth factor (NGF), in the hippocampus and/or cortex of mice, and the levels of glutamate and GABA were normalized after PTZ-induced kindling by (R)-32. Importantly, besides antiseizure activity, (R)-32 demonstrated potent antinociceptive efficacy in formalin-induced pain, capsaicin-induced pain, as well as oxaliplatin- and streptozotocin-induced peripheral neuropathy in mice (i.p.). No influence on muscular strength and body temperature in mice was observed. Pharmacokinetic studies and in vitro ADME-Tox data (i.e., high metabolic stability in human liver microsomes, a weak influence on CYPs, no hepatotoxicity, satisfactory passive transport, etc.) proved favorable drug-like properties of (R)-32. Thermal stability of (R)-32 shown in thermogravimetry and differential scanning calorimetry gives the opportunity to develop innovative oral solid dosage forms loaded with this compound. The in vitro binding and functional assays indicated its multimodal mechanism of action. (R)-32, beyond TRPV1 antagonism, inhibited calcium and sodium currents at a concentration of 10 µM. Therefore, the data obtained in the current studies justify a more detailed preclinical development of (R)-32 for epilepsy and pain indications.


Asunto(s)
Analgésicos , Anticonvulsivantes , Convulsiones , Animales , Analgésicos/farmacología , Ratones , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/farmacología , Anticonvulsivantes/química , Masculino , Glicina/farmacología , Glicina/análogos & derivados , Glicina/química , Modelos Animales de Enfermedad , Electrochoque , Humanos , Excitación Neurológica/efectos de los fármacos , Pentilenotetrazol , Dolor/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Descubrimiento de Drogas
5.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125607

RESUMEN

The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.


Asunto(s)
Analgésicos , Antiinflamatorios , Receptores Histamínicos H3 , Animales , Humanos , Ratones , Receptores Histamínicos H3/metabolismo , Analgésicos/farmacología , Antiinflamatorios/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Masculino , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuralgia/inducido químicamente , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Lipopolisacáridos , Línea Celular Tumoral
6.
Bioorg Med Chem ; 110: 117829, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002183

RESUMEN

In pharmaceutical science and drug design the versatility of the pyrrolidine scaffold relating to spatial arrangement, synthetic accessibility and pharmacological profile is a largely explored and most likely interesting one. Nonetheless, few evidences suggest the pivotal role of pyrrolidine as scaffold for multipotent agents in neurodegenerative diseases. We then challenged the enrolling in the field of Alzheimer disease of so far not ravelled targets of this chemical cliché with a structure based and computer-aided design strategy focusing on multi-target action, versatile synthesis as well as pharmacological safeness. To achieve these hits, ten enantiomeric pairs of compounds were obtained and tested, and the biological data will be here presented and discussed. Among the novel compounds, coumarin and sesamol scaffolds containing analogues resulted promising perspectives.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Pirrolidinas , Pirrolidinas/química , Pirrolidinas/síntesis química , Pirrolidinas/farmacología , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Estereoisomerismo , Estructura Molecular , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/síntesis química , Animales , Relación Estructura-Actividad
7.
J Med Chem ; 67(12): 9896-9926, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38885438

RESUMEN

The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in ß-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animales , Relación Estructura-Actividad , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células HEK293 , Receptores de Cannabinoides/metabolismo , Dronabinol/farmacología , Dronabinol/análogos & derivados , Dronabinol/química
8.
ACS Chem Neurosci ; 15(11): 2198-2222, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38741575

RESUMEN

In the present study, a series of original alaninamide derivatives have been designed applying a combinatorial chemistry approach, synthesized, and characterized in the in vivo and in vitro assays. The obtained molecules showed potent and broad-spectrum activity in basic seizure models, namely, the maximal electroshock (MES) test, the 6 Hz (32 mA) seizure model, and notably, the 6 Hz (44 mA) model of pharmacoresistant seizures. Most potent compounds 26 and 28 displayed the following pharmacological values: ED50 = 64.3 mg/kg (MES), ED50 = 15.6 mg/kg (6 Hz, 32 mA), ED50 = 29.9 mg/kg (6 Hz, 44 mA), and ED50 = 34.9 mg/kg (MES), ED50 = 12.1 mg/kg (6 Hz, 32 mA), ED50 = 29.5 mg/kg (6 Hz, 44 mA), respectively. Additionally, 26 and 28 were effective in the ivPTZ seizure threshold test and had no influence on the grip strength. Moreover, lead compound 28 was tested in the PTZ-induced kindling model, and then, its influence on glutamate and GABA levels in the hippocampus and cortex was evaluated by the high-performance liquid chromatography (HPLC) method. In addition, 28 revealed potent efficacy in formalin-induced tonic pain, capsaicin-induced pain, and oxaliplatin- and streptozotocin-induced peripheral neuropathy. Pharmacokinetic studies and in vitro ADME-Tox data proved favorable drug-like properties of 28. The patch-clamp recordings in rat cortical neurons showed that 28 at a concentration of 10 µM significantly inhibited fast sodium currents. Therefore, 28 seems to be an interesting candidate for future preclinical development in epilepsy and pain indications.


Asunto(s)
Analgésicos , Anticonvulsivantes , Convulsiones , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/química , Anticonvulsivantes/síntesis química , Analgésicos/farmacología , Convulsiones/tratamiento farmacológico , Masculino , Ratas , Ratones , Modelos Animales de Enfermedad , Ratas Wistar , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Electrochoque , Neuronas/efectos de los fármacos , Neuronas/metabolismo
9.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791603

RESUMEN

In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.


Asunto(s)
Dopamina , Mucosa Intestinal , Permeabilidad , Sistema Renina-Angiotensina , Uniones Estrechas , Humanos , Sistema Renina-Angiotensina/fisiología , Dopamina/metabolismo , Animales , Uniones Estrechas/metabolismo , Mucosa Intestinal/metabolismo , Tracto Gastrointestinal/metabolismo , Funcion de la Barrera Intestinal
10.
J Med Chem ; 67(2): 1580-1610, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38190615

RESUMEN

Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Selenio , Ratas , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Serotonina/uso terapéutico , Ratas Wistar , Neuroprotección , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Receptores de Serotonina , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
11.
Antibiotics (Basel) ; 12(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37998820

RESUMEN

In this study, a search for new therapeutic agents that may improve the antibacterial activity of conventional antibiotics and help to successfully overcome methicillin-resistant Staphylococcus aureus (MRSA) infections has been conducted. The purpose of this work was to extend the scope of our preliminary studies and to evaluate the adjuvant potency of new derivatives in a set of S. aureus clinical isolates. The study confirmed the high efficacy of piperazine derivatives of 5-arylideneimidazol-4-one (7-9) tested previously, and it enabled the authors to identify even more efficient modulators of bacterial resistance among new analogs. The greatest capacity to enhance oxacillin activity was determined for 1-benzhydrylpiperazine 5-spirofluorenehydantoin derivative (13) which, at concentrations as low as 0.0625 mM, restores the effectiveness of ß-lactam antibiotics against MRSA strains. In silico studies showed that the probable mechanism of action of 13 is related to the binding of the molecule with the allosteric site of PBP2a. Interestingly, thiazole derivatives tested were shown to act as both oxacillin and erythromycin conjugators in S. aureus isolates, suggesting a complex mode of action (i.e., influence on the Msr(A) efflux pump). This high enhancer activity indicates the high potential of imidazolones to become commercially available antibiotic adjuvants.

12.
Metabolites ; 13(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37999226

RESUMEN

Excessive fructose consumption may lead to metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD) and hypertension. α1-adrenoceptors antagonists are antihypertensive agents that exert mild beneficial effects on the metabolic profile in hypertensive patients. However, they are no longer used as a first-line therapy for hypertension based on Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) outcomes. Later studies have shown that quinazoline-based α1-adrenolytics (prazosin, doxazosin) induce apoptosis; however, this effect was independent of α1-adrenoceptor blockade and was associated with the presence of quinazoline moiety. Recent studies showed that α1-adrenoceptors antagonists may reduce mortality in COVID-19 patients due to anti-inflammatory properties. MH-76 (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride)) is a non-quinazoline α1-adrenoceptor antagonist which, in fructose-fed rats, exerted anti-inflammatory, antihypertensive properties and reduced insulin resistance and visceral adiposity. In this study, we aimed to evaluate the effect of fructose consumption and treatment with α1-adrenoceptor antagonists of different classes (MH-76 and prazosin) on liver tissue of fructose-fed rats. Livers were collected from four groups (Control, Fructose, Fructose + MH-76 and Fructose + Prazosin) and subjected to biochemical and histopathological studies. Both α1-adrenolytics reduced macrovesicular steatosis and triglycerides content of liver tissue and improved its antioxidant capacity. Treatment with MH-76, contrary to prazosin, reduced leucocytes infiltration as well as decreased elevated IL-6 and leptin concentrations. Moreover, the MH-76 hepatotoxicity in hepatoma HepG2 cells was less than that of prazosin. The use of α1-adrenolytics with anti-inflammatory properties may be an interesting option for treatment of hypertension with metabolic complications.

13.
Eur J Med Chem ; 261: 115832, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37837674

RESUMEN

Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), ß-secretase (BACE1), amyloid ß aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 µM, mGAT4 IC50 = 12 µM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aß40 aggregation inhibitory activity (IC50 = 1.57 µM and 99 % at 10 µM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 µM), Aß aggregation (79 % at 10 µM) and mGATs (mGAT1 IC50 = 30 µM, mGAT4 IC50 = 25 µM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Ratones , Animales , Butirilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Diseño de Fármacos , Ácido Aspártico Endopeptidasas/metabolismo , Acetilcolinesterasa/metabolismo
14.
ACS Omega ; 8(41): 38566-38576, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867702

RESUMEN

Salsolinol (1-methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol) is a close structural analogue of dopamine with an asymmetric center at the C1 position, and its presence in vivo, both in humans and rodents, has already been proven. Yet, given the fact that salsolinol colocalizes with dopamine-rich regions and was first detected in the urine of Parkinson's disease patients, its direct role in the process of neurodegeneration has been proposed. Here, we report that R and S enantiomers of salsolinol, which we purified from commercially available racemic mixture by means of high-performance liquid chromatography, exhibited neuroprotective properties (at the concentration of 50 µM) toward the human dopaminergic SH-SY5Y neuroblastoma cell line. Furthermore, within the study, we observed no toxic effect of N-methyl-(R)-salsolinol on SH-SY5Y neuroblastoma cells up to the concentration of 750 µM, either. Additionally, our molecular docking analysis showed that enantiomers of salsolinol should exhibit a distinct ability to interact with dopamine D2 receptors. Thus, we postulate that our results highlight the need to acknowledge salsolinol as an active dopamine metabolite and to further explore the neuroregulatory role of enantiomers of salsolinol.

15.
Eur J Med Chem ; 260: 115756, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37657272

RESUMEN

Alzheimer's disease (AD), a neurodegenerative disorder with a complex aetiology, is the most common memory dysfunction particularly affecting the elderly. Various protein targets have been classified to be involved in the AD treatment, including 5-HT6 receptor (5-HT6R). So far, the 5-HT6R ligands obtained by our research group have become a good basis for hydrophobicity modulation to give a chance for more effective action toward AD by additional influence on target enzymes, e.g. cyclin-dependent kinase 5 (CDK5). In the search for 5-HT6R agents with additional inhibitory action on the enzyme, a series of 25 new 1,3,5-triazines (7-31) as modifications of lead, 4-[1-(2,5-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazine-2-amine (6), was rationally designed. Molecular modelling, synthesis, crystallographic studies, in vitro biological assays and behavioral studies in vivo were performed. The new triazines showed high affinity (Ki < 100 nM) and selectivity for 5-HT6R. The most effective one, 4-[1-(2,5-difluorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazine-2-amine (8), exhibited the strong antagonistic action towards 5-HT6R (Ki = 5 nM, pKb = 8.16), had an impact on the memory processes in the Novel Object Recognition test and displayed anxiolytic-like activity in the Elevated Plus Maze test in rats. Moreover, it had the antiplatelet effect as well as very good permeability (PAMPA model), high metabolic stability (RLMs) and satisfactory safety in vitro. Although the CDK5 inhibitory effects in vitro for the tested compounds (8, 10, 14, 18, 26-31) missed the potency expected from in silico simulations, the novel antagonist (8) with a very satisfying pharmacological and ADMET profile can serve as a new lead structure in further searches for innovative therapy against AD with accompanying symptoms.


Asunto(s)
Enfermedad de Alzheimer , Ansiolíticos , Animales , Ratas , Enfermedad de Alzheimer/tratamiento farmacológico , Serotonina , Aminas , Memoria
16.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37762006

RESUMEN

Chronic inflammation plays an important role in the development of neurodegenerative diseases, such as Parkinson's disease (PD). In the present study, we synthesized 25 novel xanthine derivatives with variable substituents at the N1-, N3- and C8-position as adenosine receptor antagonists with potential anti-inflammatory activity. The compounds were investigated in radioligand binding studies at all four human adenosine receptor subtypes, A1, A2A, A2B and A3. Compounds showing nanomolar A2A and dual A1/A2A affinities were obtained. Three compounds, 19, 22 and 24, were selected for further studies. Docking and molecular dynamics simulation studies indicated binding poses and interactions within the orthosteric site of adenosine A1 and A2A receptors. In vitro studies confirmed the high metabolic stability of the compounds, and the absence of toxicity at concentrations of up to 12.5 µM in various cell lines (SH-SY5Y, HepG2 and BV2). Compounds 19 and 22 showed anti-inflammatory activity in vitro. In vivo studies in mice investigating carrageenan- and formalin-induced inflammation identified compound 24 as the most potent anti-inflammatory derivative. Future studies are warranted to further optimize the compounds and to explore their therapeutic potential in neurodegenerative diseases.


Asunto(s)
Neuroblastoma , Animales , Humanos , Ratones , Antiinflamatorios/farmacología , Inflamación , Adenosina , Carragenina
17.
Eur J Med Chem ; 259: 115695, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567058

RESUMEN

Alzheimer's disease is becoming a growing problem increasing at a tremendous rate. Serotonin 5-HT6 receptors appear to be a particularly attractive target from a therapeutic perspective, due to their involvement not only in cognitive processes, but also in depression and psychosis. In this work, we present the synthesis and broad biological characterization of a new series of 18 compounds with a unique 1,3,5-triazine backbone, as potent 5-HT6 receptor ligands. The main aim of this research is to compare the biological activity of the newly synthesized sulfur derivatives with their oxygen analogues and their N-demethylated O- and S-metabolites obtained for the first time. Most of the new triazines displayed high affinity (Ki < 200 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R, and D2R, in the radioligand binding assays. For selected, active compounds crystallographic studies, functional bioassays, and ADME-Tox profile in vitro were performed. The exciting novelty is that the sulfur derivatives exhibit an agonistic mode of action contrary to all other compounds obtained to date in this chemical class herein and previously reported. Advanced computational studies indicated that this intriguing functional shift might be caused by presence of chalcogen bonds formed only by the sulfur atom. In addition, the N-demethylated derivatives have emerged highly potent antioxidants and, moreover, show a significant improvement in metabolic stability compared to the parent structures. The cholinesterase study present micromolar inhibitory AChE and BChE activity for both 5-HT6 agonist 19 and potent antagonist 5. Finally, the behavioral experiments of compound 19 demonstrated its antidepressant-like properties and slight ability to improve cognitive deficits, without inducing memory impairments by itself. Described pharmacological properties of both compounds (5 and 19) allow to give a design clue for the development of multitarget compounds with 5-HT6 (both agonist and antagonist)/AChE and/or BChE mechanism in the group of 1,3,5-triazine derivatives.


Asunto(s)
Enfermedad de Alzheimer , Calcógenos , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Serotonina , Estructura Molecular , Relación Estructura-Actividad , Receptores de Serotonina/metabolismo , Ligandos , Triazinas/química , Éteres , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Acetilcolinesterasa/metabolismo
18.
ChemMedChem ; 18(18): e202300278, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37387321

RESUMEN

Kainate receptors are a class of ionotropic glutamate receptors that respond to the excitatory neurotransmitter glutamate in the central nervous system and play an important role in the development of neurodegenerative disorders and the regulation of synaptic function. In the current study, we investigated the structure- activity relationship of the series of quinoxaline-2,3-diones substituted at N1, 6, and 7 positions, as ligands of kainate homomeric receptors GluK1-3 and GluK5. Pharmacological characterization showed that all derivatives obtained exhibited micromolar affinity at GluK3 receptors with Ki values in the range 0.1-4.4 µM range. The antagonistic properties of the selected analogues: N-(7-fluoro-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide, N-(7-(1H-imidazol-1-yl)-6-iodo-2,3-dioxo-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide and N-(7-(1H-imidazol-1-yl)-2,3-dioxo-6-(phenylethynyl)-3,4-dihydroquinoxalin-1(2H)-yl)-3-sulfamoylbenzamide at GluK3 receptors, were confirmed by an intracellular calcium imaging assay. To correlate in vitro affinity data with structural features of the synthesized compounds and to understand the impact of the substituent in N1 position on ability to form additional protein-ligand interactions, molecular modeling and docking studies were carried out. Experimental solubility studies using UV spectroscopy detection have shown that 7-imidazolyl-6-iodo analogues with a sulfamoylbenzamide moiety at the N1 position are the best soluble compounds in the series, with molar solubility in TRISS buffer at pH 9 more than 3-fold higher compared to NBQX, a known AMPA/kainate antagonist.


Asunto(s)
Ácido Kaínico , Receptores de Ácido Kaínico , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Quinoxalinas/farmacología , Solubilidad , Relación Estructura-Actividad
19.
Bioorg Med Chem ; 88-89: 117333, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37236021

RESUMEN

Butyrylcholinesterase (BuChE) and amyloid ß (Aß) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aß inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aß aggregation inhibition at 10 µM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.


Asunto(s)
Enfermedad de Alzheimer , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Acetilcolinesterasa/metabolismo , Diseño de Fármacos , Estructura Molecular , Simulación del Acoplamiento Molecular
20.
Molecules ; 28(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241939

RESUMEN

Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.


Asunto(s)
Histamina , Triazinas , Humanos , Receptores Histamínicos H4 , Triazinas/farmacología , Triazinas/uso terapéutico , Receptores Histamínicos , Dolor/tratamiento farmacológico , Ligandos , Analgésicos/farmacología , Analgésicos/uso terapéutico , Receptores Acoplados a Proteínas G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...