Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843935

RESUMEN

Age-related reduction in muscle stem cell (MuSC) regenerative capacity is associated with cell-autonomous and non-cell-autonomous changes caused by alterations in systemic and skeletal muscle environments, ultimately leading to a decline in MuSC number and function. Previous studies demonstrated that STAT3 plays a key role in driving MuSC expansion and differentiation after injury-activated regeneration, by regulating autophagy in activated MuSCs. However, autophagy gradually declines in MuSCs during lifespan and contributes to the impairment of MuSC-mediated regeneration of aged muscles. Here, we show that STAT3 inhibition restores the autophagic process in aged MuSCs, thereby recovering MuSC ability to promote muscle regeneration in geriatric mice. We show that STAT3 inhibition could activate autophagy at the nuclear level, by promoting transcription of autophagy-related genes, and at the cytoplasmic level, by targeting STAT3/PKR phosphorylation of eIF2α. These results point to STAT3 inhibition as a potential intervention to reverse the age-related autophagic block that impairs MuSC ability to regenerate aged muscles. They also reveal that STAT3 regulates MuSC function by both transcription-dependent and transcription-independent regulation of autophagy.


Asunto(s)
Envejecimiento , Autofagia , Músculo Esquelético , Regeneración , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Animales , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/citología , Envejecimiento/fisiología , Envejecimiento/metabolismo , Ratones Endogámicos C57BL , Células Madre/metabolismo , Células Madre/citología , Fosforilación , Masculino , Diferenciación Celular , Transducción de Señal
2.
Cell Death Dis ; 13(8): 737, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028501

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal disease caused by Lamin A mutation, leading to altered nuclear architecture, loss of peripheral heterochromatin and deregulated gene expression. HGPS patients eventually die by coronary artery disease and cardiovascular alterations. Yet, how deregulated transcriptional networks at the cellular level impact on the systemic disease phenotype is currently unclear. A genome-wide analysis of gene expression in cultures of primary HGPS fibroblasts identified SerpinE1, also known as Plasminogen Activator Inhibitor (PAI-1), as central gene that propels a cell-autonomous pathogenic signaling from the altered nuclear lamina. Indeed, siRNA-mediated downregulation and pharmacological inhibition of SerpinE1 by TM5441 could revert key pathological features of HGPS in patient-derived fibroblasts, including re-activation of cell cycle progression, reduced DNA damage signaling, decreased expression of pro-fibrotic genes and recovery of mitochondrial defects. These effects were accompanied by the correction of nuclear abnormalities. These data point to SerpinE1 as a novel potential effector and target for therapeutic interventions in HGPS pathogenesis.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico , Progeria , Núcleo Celular , Fibroblastos , Humanos , Lamina Tipo A , Inhibidor 1 de Activador Plasminogénico/metabolismo
3.
Metabolites ; 11(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34940613

RESUMEN

Skeletal muscle is a very dynamic and plastic tissue, being essential for posture, locomotion and respiratory movement. Muscle atrophy or genetic muscle disorders, such as muscular dystrophies, are characterized by myofiber degeneration and replacement with fibrotic tissue. Recent studies suggest that changes in muscle metabolism such as mitochondrial dysfunction and dysregulation of intracellular Ca2+ homeostasis are implicated in many adverse conditions affecting skeletal muscle. Accumulating evidence also suggests that ER stress may play an important part in the pathogenesis of inflammatory myopathies and genetic muscle disorders. Among the different known proteins regulating ER structure and function, we focused on RTN-1C, a member of the reticulon proteins family localized on the ER membrane. We previously demonstrated that RTN-1C expression modulates cytosolic calcium concentration and ER stress pathway. Moreover, we recently reported a role for the reticulon protein in autophagy regulation. In this study, we found that muscle differentiation process positively correlates with RTN-1C expression and UPR pathway up-regulation during myogenesis. To better characterize the role of the reticulon protein alongside myogenic and muscle regenerative processes, we performed in vivo experiments using either a model of muscle injury or a photogenic model for Duchenne muscular dystrophy. The obtained results revealed RTN-1C up-regulation in mice undergoing active regeneration and localization in the injured myofibers. The presented results strongly suggested that RTN-1C, as a protein involved in key aspects of muscle metabolism, may represent a new target to promote muscle regeneration and repair upon injury.

4.
Nat Commun ; 12(1): 6013, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650038

RESUMEN

The transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Músculo Esquelético/metabolismo , Regeneración/fisiología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Factor de Unión a CCAAT/genética , Diferenciación Celular/genética , Proliferación Celular , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Isoformas de Proteínas/genética , Regeneración/genética
6.
Pharmacol Res ; 170: 105751, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34197911

RESUMEN

Duchenne Muscular Dystrophy (DMD) is a rare disorder characterized by progressive muscle wasting, weakness, and premature death. Remarkable progress has been made in genetic approaches, restoring dystrophin, or its function. However, the targeting of secondary pathological mechanisms, such as increasing muscle blood flow or stopping fibrosis, remains important to improve the therapeutic benefits, that depend on tackling both the genetic disease and the downstream consequences. Mitochondrial dysfunctions are one of the earliest deficits in DMD, arise from multiple cellular stressors and result in less than 50% of ATP content in dystrophic muscles. Here we establish that there are two temporally distinct phases of mitochondrial damage with depletion of mitochondrial mass at early stages and an accumulation of dysfunctional mitochondria at later stages, leading to a different oxidative fibers pattern, in young and adult mdx mice. We also observe a progressive mitochondrial biogenesis impairment associated with increased deacetylation of peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) promoter. Such histone deacetylation is inhibited by givinostat that positively modifies the epigenetic profile of PGC-1α promoter, sustaining mitochondrial biogenesis and oxidative fiber type switch. We, therefore, demonstrate that givinostat exerts relevant effects at mitochondrial level, acting as a metabolic remodeling agent capable of efficiently promoting mitochondrial biogenesis in dystrophic muscle.


Asunto(s)
Carbamatos/farmacología , Metabolismo Energético/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Biogénesis de Organelos , Acetilación , Animales , Modelos Animales de Enfermedad , Epigénesis Genética , Ratones Endogámicos mdx , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Regiones Promotoras Genéticas
7.
Antioxid Redox Signal ; 34(4): 294-307, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32228062

RESUMEN

Significance: Senescence is a cellular state induced by internal or external stimuli, which result in cell cycle arrest, morphological changes, and dysfunctions in mitochondrial and lysosomal functionality as well as the senescence-associated secretory phenotype. Senescent cells accumulate in tissues in physiological and pathological conditions such as development, tissue repair, aging, and cancer. Recent Advances: Growing evidences indicate that senescent cells in vivo are a heterogeneous cell population due to different cell-autonomous activated pathways and distinct microenvironmental contexts. Critical Issues: In this review, we discuss the different contexts where senescence assumes a key role with beneficial or harmful outcomes. The heterogeneous nature of senescence pushes toward resolution of the specific molecular profile and secretome to typify senescent cells in physiological and pathological contexts. Future Directions: Future research will enable exploring the heterogeneity of the senescent population to precisely map the progression of cells through senescent trajectories and study the impact of the therapeutic advantage of senolytic drugs for translational strategies toward supporting the health span. Antioxid. Redox Signal. 34, 294-307.


Asunto(s)
Envejecimiento/fisiología , Senescencia Celular/fisiología , Animales , Biomarcadores , Puntos de Control del Ciclo Celular , Microambiente Celular , Humanos , Lisosomas/metabolismo , Mitocondrias/metabolismo
8.
Nat Commun ; 10(1): 1796, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996264

RESUMEN

Metabolic reprogramming is an active regulator of stem cell fate choices, and successful stem cell differentiation in different compartments requires the induction of oxidative phosphorylation. However, the mechanisms that promote mitochondrial respiration during stem cell differentiation are poorly understood. Here we demonstrate that Stat3 promotes muscle stem cell myogenic lineage progression by stimulating mitochondrial respiration in mice. We identify Fam3a, a cytokine-like protein, as a major Stat3 downstream effector in muscle stem cells. We demonstrate that Fam3a is required for muscle stem cell commitment and skeletal muscle development. We show that myogenic cells secrete Fam3a, and exposure of Stat3-ablated muscle stem cells to recombinant Fam3a in vitro and in vivo rescues their defects in mitochondrial respiration and myogenic commitment. Together, these findings indicate that Fam3a is a Stat3-regulated secreted factor that promotes muscle stem cell oxidative metabolism and differentiation, and suggests that Fam3a is a potential tool to modulate cell fate choices.


Asunto(s)
Diferenciación Celular , Citocinas/fisiología , Desarrollo de Músculos/fisiología , Mioblastos/fisiología , Factor de Transcripción STAT3/fisiología , Células Madre/fisiología , Animales , Animales Recién Nacidos , Linaje de la Célula/fisiología , Células Cultivadas , Embrión de Mamíferos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Estriado/citología , Músculo Estriado/crecimiento & desarrollo , Fosforilación Oxidativa , Transducción de Señal/fisiología
10.
PLoS One ; 12(6): e0179464, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28609469

RESUMEN

Post-translational modifications of histones play a key role in the regulation of gene expression during development and differentiation. Numerous studies have shown the dynamics of combinatorial regulation by transcription factors and histone modifications, in the sense that different combinations lead to distinct expression outcomes. Here, we investigated gene regulation by stable enrichment patterns of histone marks H3K4me2 and H3K4me3 in combination with the chromatin binding of the muscle tissue-specific transcription factor MyoD during myogenic differentiation of C2C12 cells. Using k-means clustering, we found that specific combinations of H3K4me2/3 profiles over and towards the gene body impact on gene expression and marks a subset of genes important for muscle development and differentiation. By further analysis, we found that the muscle key regulator MyoD was significantly enriched on this subset of genes and played a repressive role during myogenic differentiation. Among these genes, we identified the pluripotency gene Patz1, which is repressed during myogenic differentiation through direct binding of MyoD to promoter elements. These results point to the importance of integrating histone modifications and MyoD chromatin binding for coordinated gene activation and repression during myogenic differentiation.


Asunto(s)
Diferenciación Celular/genética , Histonas/genética , Proteína MioD/genética , Mioblastos/metabolismo , Animales , Línea Celular , Células Cultivadas , Análisis por Conglomerados , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Células HEK293 , Histonas/clasificación , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Ratones , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Mioblastos/citología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
J Vis Exp ; (124)2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28654079

RESUMEN

Increasing evidence points to autophagy as a crucial regulatory process to preserve tissue homeostasis. It is known that autophagy is involved in skeletal muscle development and regeneration, and the autophagic process has been described in several muscular pathologies and age-related muscle disorders. A recently described block of the autophagic process that correlates with the functional exhaustion of satellite cells during muscle repair supports the notion that active autophagy is coupled with productive muscle regeneration. These data uncover the crucial role of autophagy in satellite cell activation during muscle regeneration in both normal and pathological conditions, such as muscular dystrophies. Here, we provide a protocol to monitor the autophagic process in the adult Muscle Stem Cell (MuSC) compartment during muscle regenerative conditions. This protocol describes the setup methodology to perform in situ immunofluorescence imaging of LC3, an autophagy marker, and MyoD, a myogenic lineage marker, in muscle tissue sections from control and injured mice. The methodology reported allows for monitoring the autophagic process in one specific cell compartment, the MuSC compartment, which plays a central role in orchestrating muscle regeneration.


Asunto(s)
Autofagia/fisiología , Músculo Esquelético/fisiología , Distrofias Musculares/patología , Células Satélite del Músculo Esquelético/citología , Coloración y Etiquetado/métodos , Animales , Biomarcadores/metabolismo , Linaje de la Célula , Técnica del Anticuerpo Fluorescente , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/patología , Proteína MioD/metabolismo , Regeneración/fisiología , Células Satélite del Músculo Esquelético/patología
12.
Genes Dev ; 31(7): 648-659, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28446595

RESUMEN

The molecular determinants of muscle progenitor impairment to regenerate aged muscles are currently unclear. We show that, in a mouse model of replicative senescence, decline in muscle satellite cell-mediated regeneration coincides with activation of DNA damage response (DDR) and impaired ability to differentiate into myotubes. Inhibition of DDR restored satellite cell differentiation ability. Moreover, in replicative human senescent fibroblasts, DDR precluded MYOD-mediated activation of the myogenic program. A DDR-resistant MYOD mutant could overcome this barrier by resuming cell cycle progression. Likewise, DDR inhibition could also restore MYOD's ability to activate the myogenic program in human senescent fibroblasts. Of note, we found that cell cycle progression is necessary for the DDR-resistant MYOD mutant to reverse senescence-mediated inhibition of the myogenic program. These data provide the first evidence of DDR-mediated functional antagonism between senescence and MYOD-activated gene expression and indicate a previously unrecognized requirement of cell cycle progression for the activation of the myogenic program.


Asunto(s)
Senescencia Celular/genética , Daño del ADN , Fibroblastos/citología , Músculo Esquelético/citología , Proteína MioD/metabolismo , Mioblastos/citología , Animales , Ciclo Celular , Diferenciación Celular , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Proteína MioD/genética , Mioblastos/metabolismo
13.
Cell Rep ; 17(11): 3010-3023, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27974213

RESUMEN

Mitochondrial dysfunction occurs in many muscle degenerative disorders. Here, we demonstrate that mitochondrial biogenesis was impaired in limb-girdle muscular dystrophy (LGMD) 2D patients and mice and was associated with impaired OxPhos capacity. Two distinct approaches that modulated histones or peroxisome proliferator-activated receptor-gamma coactivator 1 α (PGC-1α) acetylation exerted equivalent functional effects by targeting different mitochondrial pathways (mitochondrial biogenesis or fatty acid oxidation[FAO]). The histone deacetylase inhibitor Trichostatin A (TSA) changed chromatin assembly at the PGC-1α promoter, restored mitochondrial biogenesis, and enhanced muscle oxidative capacity. Conversely, nitric oxide (NO) triggered post translation modifications of PGC-1α and induced FAO, recovering the bioenergetics impairment of muscles but shunting the defective mitochondrial biogenesis. In conclusion, a transcriptional blockade of mitochondrial biogenesis occurred in LGMD-2D and could be recovered by TSA changing chromatin conformation, or it could be overcome by NO activating a mitochondrial salvage pathway.


Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias/genética , Distrofia Muscular de Cinturas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Acetilación , Animales , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Ratones , Mitocondrias/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Óxido Nítrico/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
15.
Front Aging Neurosci ; 7: 37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25954192

RESUMEN

A hallmark of aging is alteration of organismal homeostasis and progressive decline of tissue functions. Alterations of both cell intrinsic functions and regenerative environmental cues contribute to the compromised stem cell activity and reduced regenerative capability occurring in aged muscles. In this perspective, we discuss the new evidence supporting the hypothesis that skeletal muscle stem cells (MuSCs) are intrinsically defective in elderly muscles. In particular, we review three recent papers leading to identify fibroblast growth factor receptor-1, p38 mitogen-activated protein kinase, and p16INK4a as altered signaling in satellite cells from aged mice. These pathways contribute to age-related loss of MuSCs asymmetric polarization, compromised self-renewal capacity, and acquisition of pre-senescent state. The pharmacological manipulation of those networks can open novel strategies to rejuvenate MuSCs and counteract the functional decline of skeletal muscle during aging.

16.
Nat Med ; 20(10): 1182-6, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25194572

RESUMEN

The progressive loss of muscle regenerative capacity with age or disease results in part from a decline in the number and function of satellite cells, the direct cellular contributors to muscle repair. However, little is known about the molecular effectors underlying satellite cell impairment and depletion. Elevated levels of inflammatory cytokines, including interleukin-6 (IL-6), are associated with both age-related and muscle-wasting conditions. The levels of STAT3, a downstream effector of IL-6, are also elevated with muscle wasting, and STAT3 has been implicated in the regulation of self-renewal and stem cell fate in several tissues. Here we show that IL-6-activated Stat3 signaling regulates satellite cell behavior, promoting myogenic lineage progression through myogenic differentiation 1 (Myod1) regulation. Conditional ablation of Stat3 in Pax7-expressing satellite cells resulted in their increased expansion during regeneration, but compromised myogenic differentiation prevented the contribution of these cells to regenerating myofibers. In contrast, transient Stat3 inhibition promoted satellite cell expansion and enhanced tissue repair in both aged and dystrophic muscle. The effects of STAT3 inhibition on cell fate and proliferation were conserved in human myoblasts. The results of this study indicate that pharmacological manipulation of STAT3 activity can be used to counteract the functional exhaustion of satellite cells in pathological conditions, thereby maintaining the endogenous regenerative response and ameliorating muscle-wasting diseases.


Asunto(s)
Factor de Transcripción STAT3/fisiología , Células Satélite del Músculo Esquelético/fisiología , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Proliferación Celular , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Noqueados , Desarrollo de Músculos/fisiología , Proteína MioD/genética , Proteína MioD/metabolismo , Factor de Transcripción PAX7/metabolismo , Regeneración/fisiología , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Células Satélite del Músculo Esquelético/citología , Transducción de Señal
17.
Dev Cell ; 29(4): 373-4, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24871943

RESUMEN

Reporting in this issue of Developmental Cell, L'honoré et al. (2014) show that a network composed of Pitx2/Pitx3 and downstream antioxidant enzymes protects differentiating skeletal muscle from excessive reactive oxygen species production during fetal myogenesis. Genetic deficiency of Pitx2/Pitx3 results in irreversible oxidative DNA damage and apoptosis, impairing skeletal muscle development.


Asunto(s)
Proteínas de Homeodominio/genética , Factor Nuclear 1 de Respiración/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/genética , Animales , Proteína del Homeodomínio PITX2
19.
Cell Cycle ; 10(14): 2355-63, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21685725

RESUMEN

Upon exposure to genotoxic stress, skeletal muscle progenitors coordinate DNA repair and the activation of the differentiation program through the DNA damage-activated differentiation checkpoint, which holds the transcription of differentiation genes while the DNA is repaired. A conceptual hurdle intrinsic to this process relates to the coordination of DNA repair and muscle-specific gene transcription within specific cell cycle boundaries (cell cycle checkpoints) activated by different types of genotoxins. Here, we show that, in proliferating myoblasts, the inhibition of muscle gene transcription occurs by either a G 1- or G 2-specific differentiation checkpoint. In response to genotoxins that induce G 1 arrest, MyoD binds target genes but is functionally inactivated by a c-Abl-dependent phosphorylation. In contrast, DNA damage-activated G 2 checkpoint relies on the inability of MyoD to bind the chromatin at the G 2 phase of the cell cycle. These results indicate an intimate relationship between DNA damage-activated cell cycle checkpoints and the control of tissue-specific gene expression to allow DNA repair in myoblasts prior to the activation of the differentiation program.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Regulación de la Expresión Génica , Músculos/metabolismo , Mioblastos/efectos de los fármacos , Animales , Antineoplásicos/toxicidad , Línea Celular , Cromatina/metabolismo , Daño del ADN , Fase G1 , Fase G2 , Ratones , Proteína MioD/antagonistas & inhibidores , Proteína MioD/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Oxidantes/toxicidad , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-abl/metabolismo
20.
EMBO Rep ; 12(2): 164-71, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21212806

RESUMEN

Despite having distinct expression patterns and phenotypes in mutant mice, the myogenic regulatory factors Myf5 and MyoD have been considered to be functionally equivalent. Here, we report that these factors have a different response to DNA damage, due to the presence in MyoD and absence in Myf5 of a consensus site for Abl-mediated tyrosine phosphorylation that inhibits MyoD activity in response to DNA damage. Genotoxins failed to repress skeletal myogenesis in MyoD-null embryos; reintroduction of wild-type MyoD, but not mutant Abl phosphorylation-resistant MyoD, restored the DNA-damage-dependent inhibition of muscle differentiation. Conversely, introduction of the Abl-responsive phosphorylation motif converts Myf5 into a DNA-damage-sensitive transcription factor. Gene-dosage-dependent reduction of Abl kinase activity in MyoD-expressing cells attenuated the DNA-damage-dependent inhibition of myogenesis. The presence of a DNA-damage-responsive phosphorylation motif in vertebrate, but not in invertebrate MyoD suggests an evolved response to environmental stress, originated from basic helix-loop-helix gene duplication in vertebrate myogenesis.


Asunto(s)
Desarrollo de Músculos/efectos de los fármacos , Mutágenos/toxicidad , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Evolución Biológica , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Reactivos de Enlaces Cruzados/toxicidad , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Etopósido/toxicidad , Femenino , Técnicas de Silenciamiento del Gen , Metilmetanosulfonato/toxicidad , Ratones/embriología , Mitomicina/toxicidad , Proteína MioD/genética , Factor 5 Regulador Miogénico/genética , Fosforilación , Embarazo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/fisiología , Interferencia de ARN , Somitos/efectos de los fármacos , Somitos/metabolismo , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...