Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Rev Endocrinol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227741

RESUMEN

Type 1 diabetes mellitus (T1DM) is a growing global health concern that affects approximately 8.5 million individuals worldwide. T1DM is characterized by an autoimmune destruction of pancreatic ß cells, leading to a disruption in glucose homeostasis. Therapeutic intervention for T1DM requires a complex regimen of glycaemic monitoring and the administration of exogenous insulin to regulate blood glucose levels. Advances in continuous glucose monitoring and algorithm-driven insulin delivery devices have improved the quality of life of patients. Despite this, mimicking islet function and complex physiological feedback remains challenging. Pancreatic islet transplantation represents a potential functional cure for T1DM but is hindered by donor scarcity, variability in harvested cells, aggressive immunosuppressive regimens and suboptimal clinical outcomes. Current research is directed towards generating alternative cell sources, improving transplantation methods, and enhancing cell survival without chronic immunosuppression. This Review maps the progress in cell replacement therapies for T1DM and outlines the remaining challenges and future directions. We explore the state-of-the-art strategies for generating replenishable ß cells, cell delivery technologies and local targeted immune modulation. Finally, we highlight relevant animal models and the regulatory aspects for advancing these technologies towards clinical deployment.

2.
BMJ Open ; 14(6): e082453, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38904129

RESUMEN

PURPOSE: The 'Biomarkers of heterogeneity in type 1 diabetes' study cohort was set up to identify genetic, physiological and psychosocial factors explaining the observed heterogeneity in disease progression and the development of complications in people with long-standing type 1 diabetes (T1D). PARTICIPANTS: Data and samples were collected in two subsets. A prospective cohort of 611 participants aged ≥16 years with ≥5 years T1D duration from four Dutch Diabetes clinics between 2016 and 2021 (median age 32 years; median diabetes duration 12 years; 59% female; mean glycated haemoglobin (HbA1c) 61 mmol/mol (7.7%); 61% on insulin pump; 23% on continuous glucose monitoring (CGM)). Physical assessments were performed, blood and urine samples were collected, and participants completed questionnaires. A subgroup of participants underwent mixed-meal tolerance tests (MMTTs) at baseline (n=169) and at 1-year follow-up (n=104). Genetic data and linkage to medical and administrative records were also available. A second cross-sectional cohort included participants with ≥35 years of T1D duration (currently n=160; median age 64 years; median diabetes duration 45 years; 45% female; mean HbA1c 58 mmol/mol (7.4%); 51% on insulin pump; 83% on CGM), recruited from five centres and measurements, samples and 5-year retrospective data were collected. FINDINGS TO DATE: Stimulated residual C-peptide was detectable in an additional 10% of individuals compared with fasting residual C-peptide secretion. MMTT measurements at 90 min and 120 min showed good concordance with the MMTT total area under the curve. An overall decrease of C-peptide at 1-year follow-up was observed. Fasting residual C-peptide secretion is associated with a decreased risk of impaired awareness of hypoglycaemia. FUTURE PLANS: Research groups are invited to consider the use of these data and the sample collection. Future work will include additional hormones, beta-cell-directed autoimmunity, specific immune markers, microRNAs, metabolomics and gene expression data, combined with glucometrics, anthropometric and clinical data, and additional markers of residual beta-cell function. TRIAL REGISTRATION NUMBER: NCT04977635.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 1 , Hemoglobina Glucada , Humanos , Femenino , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/sangre , Masculino , Países Bajos , Adulto , Estudios Prospectivos , Persona de Mediana Edad , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Biomarcadores/sangre , Estudios Transversales , Fenotipo , Glucemia/metabolismo , Glucemia/análisis , Adulto Joven , Progresión de la Enfermedad , Péptido C/sangre , Anciano , Adolescente
3.
Diabetes ; 73(6): 823-833, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349844

RESUMEN

Type 1 diabetes is a chronic autoimmune disease in which destruction of pancreatic ß-cells causes life-threatening metabolic dysregulation. Numerous approaches are envisioned for new therapies, but limitations of current clinical outcome measures are significant disincentives to development efforts. C-peptide, a direct byproduct of proinsulin processing, is a quantitative biomarker of ß-cell function that is not cleared by the liver and can be measured in the peripheral blood. Studies of quantitative measures of ß-cell function have established a predictive relationship between stimulated C-peptide as a measure of ß-cell function and clinical benefits. C-peptide levels at diagnosis are often high enough to afford glycemic control benefits associated with protection from end-organ complications of diabetes, and even lower levels offer protection from severe hypoglycemia in type 1 diabetes, as observed in large prospective cohort studies and interventional trials of islet transplantation. These observations support consideration of C-peptide not just as a biomarker of ß-cell function but also as a specific, sensitive, feasible, and clinically meaningful outcome defining ß-cell preservation or restoration for clinical trials of disease-modifying therapies. Regulatory acceptance of C-peptide as a validated surrogate for demonstration of efficacy would greatly facilitate development of disease-modifying therapies for type 1 diabetes.


Asunto(s)
Biomarcadores , Péptido C , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Péptido C/metabolismo , Péptido C/sangre , Humanos , Biomarcadores/sangre , Biomarcadores/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Ensayos Clínicos como Asunto
4.
Lancet Diabetes Endocrinol ; 11(12): 915-925, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931637

RESUMEN

BACKGROUND: Metabolic outcomes in type 1 diabetes remain suboptimal. Disease modifying therapy to prevent ß-cell loss presents an alternative treatment framework but the effect on metabolic outcomes is unclear. We, therefore, aimed to define the relationship between insulin C-peptide as a marker of ß-cell function and metabolic outcomes in new-onset type 1 diabetes. METHODS: 21 trials of disease-modifying interventions within 100 days of type 1 diabetes diagnosis comprising 1315 adults (ie, those 18 years and older) and 1396 children (ie, those younger than 18 years) were combined. Endpoints assessed were stimulated area under the curve C-peptide, HbA1c, insulin use, hypoglycaemic events, and composite scores (such as insulin dose adjusted A1c, total daily insulin, U/kg per day, and BETA-2 score). Positive studies were defined as those meeting their primary endpoint. Differences in outcomes between active and control groups were assessed using the Wilcoxon rank test. FINDINGS: 6 months after treatment, a 24·8% greater C-peptide preservation in positive studies was associated with a 0·55% lower HbA1c (p<0·0001), with differences being detectable as early as 3 months. Cross-sectional analysis, combining positive and negative studies, was consistent with this proportionality: a 55% improvement in C-peptide preservation was associated with 0·64% lower HbA1c (p<0·0001). Higher initial C-peptide levels and greater preservation were associated with greater improvement in HbA1c. For HbA1c, IDAAC, and BETA-2 score, sample size predictions indicated that 2-3 times as many participants per group would be required to show a difference at 6 months as compared with C-peptide. Detecting a reduction in hypoglycaemia was affected by reporting methods. INTERPRETATION: Interventions that preserve ß-cell function are effective at improving metabolic outcomes in new-onset type 1 diabetes, confirming their potential as adjuncts to insulin. We have shown that improvements in HbA1c are directly proportional to the degree of C-peptide preservation, quantifying this relationship, and supporting the use of C-peptides as a surrogate endpoint in clinical trials. FUNDING: JDRF and Diabetes UK.


Asunto(s)
Diabetes Mellitus Tipo 1 , Adulto , Niño , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Péptido C/uso terapéutico , Estudios Transversales , Hemoglobina Glucada , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico
5.
Tissue Eng Part B Rev ; 27(3): 238-252, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32907514

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disorder in which the body's own immune system selectively attacks beta cells within pancreatic islets resulting in insufficient insulin production and loss of the ability to regulate blood glucose (BG) levels. Currently, the standard of care consists of BG level monitoring and insulin administration, which are essential to avoid the consequences of dysglycemia and long-term complications. Although recent advances in continuous glucose monitoring and automated insulin delivery systems have resulted in improved clinical outcomes for users, nearly 80% of people with T1D fail to achieve their target hemoglobin A1c (HbA1c) levels defined by the American Diabetes Association. Intraportal islet transplantation into immunosuppressed individuals with T1D suffering from impaired awareness of hypoglycemia has resulted in lower HbA1c, elimination of severe hypoglycemic events, and insulin independence, demonstrating the unique potential of beta cell replacement therapy (BCRT) in providing optimal glycemic control and a functional cure for T1D. BCRTs need to maximize cell engraftment, long-term survival, and function in the absence of immunosuppression to provide meaningful clinical outcomes to all people living with T1D. One innovative technology that could enable widespread translation of this approach into the clinic is three-dimensional (3D) bioprinting. Herein, we review how bioprinting could facilitate translation of BCRTs as well as the current and forthcoming techniques used for bioprinting of a BCRT product. We discuss the strengths and weaknesses of 3D bioprinting in this context in addition to the road ahead for the development of BCRTs. Impact statement Significant research developments in beta cell replacement therapies show its promise in providing a functional cure for type 1 diabetes (T1D); yet, their widespread clinical use has been difficult to achieve. This review provides a brief overview of the requirements for a beta cell replacement product followed by a discussion on both the promise and limitations of three-dimensional bioprinting in facilitating the fabrication of such products to enable translation into the clinic. Advancements in this area could be a key component to unlocking the safety and effectiveness of beta cell therapy for T1D.


Asunto(s)
Bioimpresión , Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Glucemia , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/terapia , Humanos
6.
Cell Metab ; 29(3): 545-563, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30840911

RESUMEN

Incredible strides have been made since the discovery of insulin almost 100 years ago. Insulin formulations have improved dramatically, glucose levels can be measured continuously, and recently first-generation biomechanical "artificial pancreas" systems have been approved by regulators around the globe. However, still only a small fraction of patients with diabetes achieve glycemic goals. Replacement of insulin-producing cells via transplantation shows significant promise, but is limited in application due to supply constraints (cadaver-based) and the need for chronic immunosuppression. Over the past decade, significant progress has been made to address these barriers to widespread implementation of a cell therapy. Can glucose levels in people with diabetes be normalized with artificial pancreas systems or via cell replacement approaches? Here we review the road ahead, including the challenges and opportunities of both approaches.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Diabetes Mellitus/terapia , Insulina/uso terapéutico , Páncreas Artificial , Células Madre Pluripotentes/trasplante , Animales , Línea Celular , Humanos , Hipoglucemiantes/uso terapéutico , Ratones , Células Madre Pluripotentes/citología , Porcinos/metabolismo
7.
Transplantation ; 102(9): 1479-1486, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29528967

RESUMEN

ß-cell replacement therapy, available currently as pancreas or islet transplantation, has developed without a clear definition of graft functional and clinical outcomes. The International Pancreas and Islet Transplant Association and European Pancreas and Islet Transplantation Association held a workshop to develop consensus for an International Pancreas and Islet Transplant Association and European Pancreas and Islet Transplant Association Statement on the definition of function and failure of current and future forms of ß-cell replacement therapy. There was consensus that ß-cell replacement therapy could be considered as a treatment for ß-cell failure, regardless of etiology and without requiring undetectable C-peptide, accompanied by glycemic instability with either problematic hypoglycemia or hyperglycemia. Glycemic control should be assessed at a minimum by glycated hemoglobin (HbA1c) and the occurrence of severe hypoglycemia. Optimal ß-cell graft function is defined by near-normal glycemic control (HbA1c ≤6.5% [48 mmol/mol]) without severe hypoglycemia or requirement for insulin or other antihyperglycemic therapy, and with an increase over pretransplant measurement of C-peptide. Good ß-cell graft function requires HbA1c less than 7.0% (53 mmol/mol) without severe hypoglycemia and with a significant (>50%) reduction in insulin requirements and restoration of clinically significant C-peptide production. Marginal ß-cell graft function is defined by failure to achieve HbA1c less than 7.0% (53 mmol/mol), the occurrence of any severe hypoglycemia, or less than 50% reduction in insulin requirements when there is restoration of clinically significant C-peptide production documented by improvement in hypoglycemia awareness/severity, or glycemic variability/lability. A failed ß-cell graft is defined by the absence of any evidence for clinically significant C-peptide production. Optimal and good function are considered successful clinical outcomes.


Asunto(s)
Diabetes Mellitus/cirugía , Células Secretoras de Insulina/trasplante , Trasplante de Islotes Pancreáticos/métodos , Biomarcadores/sangre , Glucemia/metabolismo , Péptido C/sangre , Consenso , Diabetes Mellitus/sangre , Diabetes Mellitus/diagnóstico , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemia/sangre , Hipoglucemia/etiología , Hipoglucemiantes/uso terapéutico , Células Secretoras de Insulina/metabolismo , Trasplante de Islotes Pancreáticos/efectos adversos , Trasplante de Islotes Pancreáticos/normas , Factores de Riesgo , Resultado del Tratamiento
8.
Transpl Int ; 31(4): 343-352, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29453879

RESUMEN

ß-cell replacement therapy, available currently as pancreas or islet transplantation, has developed without a clear definition of graft functional and clinical outcomes. The International Pancreas & Islet Transplant Association (IPITA) and European Pancreas & Islet Transplantation Association (EPITA) held a workshop to develop consensus for an IPITA/EPITA Statement on the definition of function and failure of current and future forms of ß-cell replacement therapy. There was consensus that ß-cell replacement therapy could be considered as a treatment for ß-cell failure, regardless of etiology and without requiring undetectable C-peptide, accompanied by glycemic instability with either problematic hypoglycemia or hyperglycemia. Glycemic control should be assessed at a minimum by glycated hemoglobin (HbA1c ) and the occurrence of severe hypoglycemia. Optimal ß-cell graft function is defined by near-normal glycemic control [HbA1c  ≤ 6.5% (48 mmol/mol)] without severe hypoglycemia or requirement for insulin or other antihyperglycemic therapy, and with an increase over pretransplant measurement of C-peptide. Good ß-cell graft function requires HbA1c  < 7.0% (53 mmol/mol) without severe hypoglycemia and with a significant (>50%) reduction in insulin requirements and restoration of clinically significant C-peptide production. Marginal ß-cell graft function is defined by failure to achieve HbA1c  < 7.0% (53 mmol/mol), the occurrence of any severe hypoglycemia, or less than 50% reduction in insulin requirements when there is restoration of clinically significant C-peptide production documented by improvement in hypoglycemia awareness/severity, or glycemic variability/lability. A failed ß-cell graft is defined by the absence of any evidence for clinically significant C-peptide production. Optimal and good functional outcomes are considered successful clinical outcomes.


Asunto(s)
Diabetes Mellitus/cirugía , Trasplante de Islotes Pancreáticos , Evaluación de Resultado en la Atención de Salud , Glucemia , Diabetes Mellitus/sangre , Hemoglobina Glucada/metabolismo , Humanos
9.
Nat Commun ; 8: 15153, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28452368

RESUMEN

Growth and differentiation factor 8 (GDF8) is a TGF-ß superfamily member, and negative regulator of skeletal muscle mass. GDF8 inhibition results in prominent muscle growth in mice, but less impressive hypertrophy in primates, including man. Broad TGF-ß inhibition suggests another family member negatively regulates muscle mass, and its blockade enhances muscle growth seen with GDF8-specific inhibition. Here we show that activin A is the long-sought second negative muscle regulator. Activin A specific inhibition, on top of GDF8 inhibition, leads to pronounced muscle hypertrophy and force production in mice and monkeys. Inhibition of these two ligands mimics the hypertrophy seen with broad TGF-ß blockers, while avoiding the adverse effects due to inhibition of multiple family members. Altogether, we identify activin A as a second negative regulator of muscle mass, and suggest that inhibition of both ligands provides a preferred therapeutic approach, which maximizes the benefit:risk ratio for muscle diseases in man.


Asunto(s)
Activinas/metabolismo , Hipertrofia/patología , Hipotonía Muscular/patología , Músculo Esquelético/crecimiento & desarrollo , Miostatina/metabolismo , Receptores de Activinas Tipo II/metabolismo , Activinas/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Índice de Masa Corporal , Dexametasona/farmacología , Humanos , Contracción Isométrica/fisiología , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Músculo Esquelético/fisiología , Miostatina/antagonistas & inhibidores , Ratas
10.
Proteomics ; 16(14): 2019-27, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27214824

RESUMEN

Pharmacologic blockade of the myostatin (Mstn)/activin receptor pathway is being pursued as a potential therapy for several muscle wasting disorders. The functional benefits of blocking this pathway are under investigation, in particular given the findings that greater muscle hypertrophy results from Mstn deficiency arising from genetic ablation compared to post-developmental Mstn blockade. Using high-resolution MS coupled with SILAC mouse technology, we quantitated the relative proteomic changes in gastrocnemius muscle from Mstn knockout (Mstn(-/-) ) and mice treated for 2-weeks with REGN1033, an anti-Mstn antibody. Relative to wild-type animals, Mstn(-/-) mice had a two-fold greater muscle mass and a >1.5-fold change in expression of 12.0% of 1137 quantified muscle proteins. In contrast, mice treated with REGN1033 had minimal changes in muscle proteome (0.7% of 1510 proteins >1.5-fold change, similar to biological difference 0.5% of 1310) even though the treatment induced significant 20% muscle mass increase. Functional annotation of the altered proteins in Mstn(-/-) mice corroborates the mutiple physiological changes including slow-to-fast fiber type switch. Thus, the proteome-wide protein expression differs between Mstn(-/-) mice and mice subjected to specific Mstn blockade post-developmentally, providing molecular-level insights to inform mechanistic hypotheses to explain the observed functional differences.


Asunto(s)
Hipertrofia/genética , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Miostatina/genética , Proteoma/genética , Animales , Anticuerpos Monoclonales/farmacología , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Marcaje Isotópico , Masculino , Ratones , Ratones Noqueados , Anotación de Secuencia Molecular , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Miostatina/antagonistas & inhibidores , Miostatina/deficiencia , Tamaño de los Órganos , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...