Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phytother Res ; 35(4): 2108-2118, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33205491

RESUMEN

The biological activities of water-soluble components of edible mushroom Rubinoboletus ballouii (RB) were seldom reported. Polysaccharides of RB (RBP) were prepared and well-characterized using chemical analyses. The immunomodulatory properties of RBP were investigated using human monocyte-derived dendritic cells (moDC) in vitro, and cyclophosphamide (CTX)-induced immunosuppressive mouse model. Results showed that RBP was found to contain 80.6% (w/w) of neutral sugars including D-fucose, D-mannose, D-glucose and D-galactose (1.7:1.4:1.0:1.8), and 12.5% (w/w) of proteins, which composed of glutamine, threonine, serine, etc. RBP could promote the maturation of moDC and increase the secretion of IL-12p40, IL-10, and TNF-α. Furthermore, the stimulation of IL-12p40 production was inhibited by pretreatment with toll-like receptor (TLR)-4 blocker or NF-κB pathway blocker, suggesting that the activation of moDC by RBP was mediated through NF-κB pathway via TLR-4 receptor. On the other hand, in CTX-treated mice, RBP restored the loss of CD34bright CD45dim hematopoietic stem cells and increased IL-2 production in sera and splenocytes culture supernatant, as well as up-regulated the percentage of CD4+ T helper lymphocyte in mice splenocytes. These findings strongly suggested that RBP are the active ingredients of RB responsible for its immunostimulatory actions and deserved to be further investigated as cancer supplements.


Asunto(s)
Basidiomycota/química , FN-kappa B/metabolismo , Polisacáridos/uso terapéutico , Receptor Toll-Like 4/metabolismo , Animales , Humanos , Ratones , Polisacáridos/farmacología
2.
Eur J Med Chem ; 200: 112341, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32505848

RESUMEN

The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia/métodos , Infecciones Estafilocócicas/terapia , Anticuerpos Antibacterianos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de la radiación , Fotoquimioterapia/normas , Fármacos Fotosensibilizantes/uso terapéutico
3.
Angew Chem Int Ed Engl ; 55(44): 13818-13821, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27699962

RESUMEN

Selective inhibition of the transporter protein sodium-glucose cotransporter 2 (SGLT2) has emerged as a promising way to control blood glucose level in diabetes patients. Reported herein is a short and convergent synthetic route towards some small-molecule SGLT2 inhibitors by a chemo- and diastereospecific palladium-catalyzed arylation reaction. This synthetic strategy enabled the discovery of two highly selective and potent SGLT2 inhibitors, thereby paving the way towards the development of carbasugar SGLT2 inhibitors as potential antidiabetic/antitumor agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...