Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomed Opt ; 28(6): 065003, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37325190

RESUMEN

Significance: We present a fiberless, portable, and modular continuous wave-functional near-infrared spectroscopy system, Spotlight, consisting of multiple palm-sized modules-each containing high-density light-emitting diode and silicon photomultiplier detector arrays embedded in a flexible membrane that facilitates optode coupling to scalp curvature. Aim: Spotlight's goal is to be a more portable, accessible, and powerful functional near-infrared spectroscopy (fNIRS) device for neuroscience and brain-computer interface (BCI) applications. We hope that the Spotlight designs we share here can spur more advances in fNIRS technology and better enable future non-invasive neuroscience and BCI research. Approach: We report sensor characteristics in system validation on phantoms and motor cortical hemodynamic responses in a human finger-tapping experiment, where subjects wore custom 3D-printed caps with two sensor modules. Results: The task conditions can be decoded offline with a median accuracy of 69.6%, reaching 94.7% for the best subject, and at a comparable accuracy in real time for a subset of subjects. We quantified how well the custom caps fitted to each subject and observed that better fit leads to more observed task-dependent hemodynamic response and better decoding accuracy. Conclusions: The advances presented here should serve to make fNIRS more accessible for BCI applications.


Asunto(s)
Hemodinámica , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Hemodinámica/fisiología , Mano
2.
IEEE Trans Haptics ; 15(2): 392-404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34793305

RESUMEN

During social interactions, people use auditory, visual, and haptic cues to convey their thoughts, emotions, and intentions. Due to weight, energy, and other hardware constraints, it is difficult to create devices that completely capture the complexity of human touch. Here we explore whether a sparse representation of human touch is sufficient to convey social touch signals. To test this we collected a dataset of social touch interactions using a soft wearable pressure sensor array, developed an algorithm to map recorded data to an array of actuators, then applied our algorithm to create signals that drive an array of normal indentation actuators placed on the arm. Using this wearable, low-resolution, low-force device, we find that users are able to distinguish the intended social meaning, and compare performance to results based on direct human touch. As online communication becomes more prevalent, such systems to convey haptic signals could allow for improved distant socializing and empathetic remote human-human interaction.


Asunto(s)
Percepción del Tacto , Tacto , Señales (Psicología) , Emociones/fisiología , Humanos , Estimulación Física/métodos , Tacto/fisiología , Percepción del Tacto/fisiología
3.
IEEE Trans Haptics ; 13(2): 286-297, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31217130

RESUMEN

Wearable haptic systems offer portable, private tactile communication to a human user. To date, advances in wearable haptic devices have typically focused on the optimization of haptic cue transmission using a single modality, or have combined two types of cutaneous feedbacks, each mapped to a particular parameter of the task. Alternatively, researchers have employed arrays of haptic tactile actuators to maximize information throughput to a user. However, when large cue sets are to be transmitted, such as those required to communicate language, perceptual interference between transmitted cues can decrease the efficacy of single-sensory systems, or require large footprints to ensure salient spatiotemporal cues are rendered to the user. In this paper, we present a wearable, multi-sensory haptic feedback system, MISSIVE (Multi-sensory Interface of Stretch, Squeeze, and Integrated Vibration Elements), that conveys multi-sensory haptic cues to the user's upper arm. We present experimental results that demonstrate that rendering haptic cues with multi-sensory components-specifically, lateral skin stretch, radial squeeze, and vibrotactile stimuli-improved perceptual distinguishability in comparison to similar cues with all-vibrotactile components. These results support the incorporation of diverse stimuli, both vibrotactile and nonvibrotactile, for applications requiring large haptic cue sets.


Asunto(s)
Señales (Psicología) , Retroalimentación Sensorial/fisiología , Fenómenos Fisiológicos de la Piel , Percepción del Tacto/fisiología , Dispositivos Electrónicos Vestibles , Adulto , Humanos
4.
IEEE Trans Haptics ; 12(1): 2-17, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30059321

RESUMEN

Despite a long history of research, the development of synthetic tactual aids to support the communication of speech has proven to be a difficult task. The current paper describes a new tactile speech device based on the presentation of phonemic-based tactile codes. The device consists of 24 tactors under independent control for stimulation at the forearm. Using properties that include frequency and waveform of stimulation, amplitude, spatial location, and movement characteristics, unique tactile codes were designed for 39 consonant and vowel phonemes of the English language. The strategy for mapping the phonemes to tactile symbols is described, and properties of the individual phonemic codes are provided. Results are reported for an exploratory study of the ability of 10 young adults to identify the tactile symbols. The participants were trained to identify sets of consonants and vowels, before being tested on the full set of 39 tactile codes. The results indicate a mean recognition rate of 86 percent correct within one to four hours of training across participants. Thus, these results support the viability of a phonemic-based approach for conveying speech information through the tactile sense.


Asunto(s)
Equipos de Comunicación para Personas con Discapacidad , Fonética , Percepción del Habla , Percepción del Tacto , Diseño de Equipo , Humanos , Tacto
5.
IEEE Trans Med Imaging ; 30(2): 391-400, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20876008

RESUMEN

We are developing a dual panel breast-dedicated positron emission tomography (PET) system using LSO scintillators coupled to position sensitive avalanche photodiodes (PSAPD). The charge output is amplified and read using NOVA RENA-3 ASICs. This paper shows that the coincidence timing resolution of the RENA-3 ASIC can be improved using certain list-mode calibrations. We treat the calibration problem as a convex optimization problem and use the RENA-3's analog-based timing system to correct the measured data for time dispersion effects from correlated noise, PSAPD signal delays and varying signal amplitudes. The direct solution to the optimization problem involves a matrix inversion that grows order (n(3)) with the number of parameters. An iterative method using single-coordinate descent to approximate the inversion grows order (n). The inversion does not need to run to convergence, since any gains at high iteration number will be low compared to noise amplification. The system calibration method is demonstrated with measured pulser data as well as with two LSO-PSAPD detectors in electronic coincidence. After applying the algorithm, the 511 keV photopeak paired coincidence time resolution from the LSO-PSAPD detectors under study improved by 57%, from the raw value of 16.3 ±0.07 ns full-width at half-maximum (FWHM) to 6.92 ±0.02 ns FWHM ( 11.52 ±0.05 ns to 4.89 ±0.02 ns for unpaired photons).


Asunto(s)
Algoritmos , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/métodos , Calibración , Modelos Teóricos , Procesamiento de Señales Asistido por Computador
6.
Med Phys ; 37(10): 5494-508, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21089785

RESUMEN

PURPOSE: The authors' laboratory is developing a dual-panel, breast-dedicated PET system. The detector panels are built from dual-LSO-position-sensitive avalanche photodiode (PSAPD) modules-units holding two 8 x 8 arrays of 1 mm3 LSO crystals, where each array is coupled to a PSAPD. When stacked to form an imaging volume, these modules are capable of recording the 3-D coordinates of individual interactions of a multiple-interaction photon event (MIPE). The small size of the scintillation crystal elements used increases the likelihood of photon scattering between crystal arrays. In this article, the authors investigate how MIPEs impact the system photon sensitivity, the data acquisition scheme, and the quality and quantitative accuracy of reconstructed PET images. METHODS: A Monte Carlo simulated PET scan using the dual-panel system was performed on a uniformly radioactive phantom for the photon sensitivity study. To establish the impact of MIPEs on a proposed PSAPD multiplexing scheme, experimental data were collected from a dual-LSO-PSAPD module edge-irradiated with a 22Na point source, the data were compared against simulation data based on an identical setup. To assess the impact of MIPEs on the dual-panel PET images, a simulated PET of a phantom comprising a matrix of hot spherical radiation sources of varying diameters immersed in a warm background was performed. The list-mode output data were used for image reconstruction, where various methods were used for estimating the location of the first photon interaction in MIPEs for more accurate line of response positioning. The contrast recovery coefficient (CRC), contrast to noise ratio (CNR), and the full width at half maximum spatial resolution of the spheres in the reconstructed images were used as figures of merit to facilitate comparison. RESULTS: Compared to image reconstruction employing only events with interactions confined to one LSO array, a potential single photon sensitivity gain of > 46.9% (> 115.7% for coincidence) was noted for a uniform phantom when MIPEs with summed-energy falling within a +/- 12% window around the photopeak were also included. Both experimental and simulation data demonstrate that < 0.4% of the events whose summed-energy deposition falling within that energy window interacted with both crystal arrays within the same dual-LSO-PSAPD module. This result establishes the feasibility of a proposed multiplexed readout of analog output signals of the two PSAPDs within each module. Using MIPEs with summed-energy deposition within the 511 keV +/- 12% photopeak window and a new method for estimating the location of the first photon interaction in MIPEs, the corresponding reconstructed image exhibited a peak CNR of 7.23 for the 8 mm diameter phantom spheres versus a CNR of 6.69 from images based solely on single LSO array interaction events. The improved system photon sensitivity could be exploited to reduce the scan time by up to approximately 10%, while still maintaining image quality comparable to that achieved if MIPEs were excluded. CONCLUSIONS: MIPE distribution in the detectors allows the proposed photodetector multiplexing arrangement without significant information loss. Furthermore, acquiring MIPEs can enhance system photon sensitivity and improve PET image CNR and CRC. The system under development can therefore competently acquire and analyze MIPEs and produce high-resolution PET images.


Asunto(s)
Posicionamiento del Paciente/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Fenómenos Biofísicos , Mama/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Imagenología Tridimensional/estadística & datos numéricos , Método de Montecarlo , Posicionamiento del Paciente/estadística & datos numéricos , Fotones , Tomografía de Emisión de Positrones/estadística & datos numéricos
7.
Phys Med Biol ; 55(23): 7149-74, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21081831

RESUMEN

A 1 mm(3) resolution clinical positron emission tomography (PET) system employing 4608 position-sensitive avalanche photodiodes (PSAPDs) is under development. This paper describes a detector multiplexing technique that simplifies the readout electronics and reduces the density of the circuit board design. The multiplexing scheme was validated using a simulation framework that models the PSAPDs and front-end multiplexing circuits to predict the signal-to-noise ratio and flood histogram performance. Two independent experimental setups measured the energy resolution, time resolution, crystal identification ability and count rate both with and without multiplexing. With multiplexing, there was no significant degradation in energy resolution, time resolution and count rate. There was a relative 6.9 ± 1.0% and 9.4 ± 1.0% degradation in the figure of merit that characterizes the crystal identification ability observed in the measured and simulated ceramic-mounted PSAPD module flood histograms, respectively.


Asunto(s)
Luz , Modelos Teóricos , Tomografía de Emisión de Positrones/instrumentación , Cerámica , Electrodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...