Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Pathology ; 56(5): 717-725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729860

RESUMEN

Application of whole genome sequencing (WGS) has allowed monitoring of the emergence of variants of concern (VOC) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) globally. Genomic investigation of emerging variants and surveillance of clinical progress has reduced the public health impact of infection during the COVID-19 pandemic. These steps required developing and implementing a proficiency testing program (PTP), as WGS has been incorporated into routine reference laboratory practice. In this study, we describe how the PTP evaluated the capacity and capability of one New Zealand and 14 Australian public health laboratories to perform WGS of SARS-CoV-2 in 2022. The participants' performances in characterising a specimen panel of known SARS-CoV-2 isolates in the PTP were assessed based on: (1) genome coverage, (2) Pango lineage, and (3) sequence quality, with the choice of assessment metrics refined based on a previously reported assessment conducted in 2021. The participants' performances in 2021 and 2022 were also compared after reassessing the 2021 results using the more stringent metrics adopted in 2022. We found that more participants would have failed the 2021 assessment for all survey samples and a significantly higher fail rate per sample in 2021 compared to 2022. This study highlights the importance of choosing appropriate performance metrics to reflect better the laboratories' capacity to perform SARS-CoV-2 WGS, as was done in the 2022 PTP. It also displays the need for a PTP for WGS of SARS-CoV-2 to be available to public health laboratories ongoing, with continuous refinements in the design and provision of the PTP to account for the dynamic nature of the COVID-19 pandemic as SARS-CoV-2 continues to evolve.


Asunto(s)
COVID-19 , Ensayos de Aptitud de Laboratorios , SARS-CoV-2 , Secuenciación Completa del Genoma , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virología , Nueva Zelanda , Australia , Genoma Viral/genética
4.
Bio Protoc ; 13(24): e4901, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38156035

RESUMEN

In situ cryo-electron tomography (cryo-ET) is the most current, state-of-the-art technique to study cell machinery in its hydrated near-native state. The method provides ultrastructural details at sub-nanometer resolution for many components within the cellular context. Making use of recent advances in sample preparation techniques and combining this method with correlative light and electron microscopy (CLEM) approaches have enabled targeted molecular visualization. Nevertheless, the implementation has also added to the complexity of the workflow and introduced new obstacles in the way of streamlining and achieving high throughput, sample yield, and sample quality. Here, we report a detailed protocol by combining multiple newly available technologies to establish an integrated, high-throughput, optimized, and streamlined cryo-CLEM workflow for improved sample yield. Key features • PRIMO micropatterning allows precise cell positioning and maximum number of cell targets amenable to thinning with cryo focused-ion-beam-scanning electron microscopy. • CERES ice shield ensures that the lamellae remain free of ice contamination during the batch milling process. • METEOR in-chamber fluorescence microscope facilitates the targeted cryo focused-ion-beam (cryo FIB) milling of these targets. • Combining the three technologies into one cryo-CLEM workflow maximizes sample yield, throughput, and efficiency. Graphical overview.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...