Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38668181

RESUMEN

Zinc oxide and polylactic-co-glycolic acid (ZnO-PLGA) nanocomposites are known to exhibit different biomedical applications and antibacterial activity, which could be beneficial for adding to wound dressings after different surgeries. However, possible cytotoxic effects along with various unexpected activities could reduce the use of these prominent systems. This is correlated to the property of ZnO, which exhibits different polymeric forms, in particular, wurtzite, zinc-blende, and rocksalt. In this study, we propose a computational approach based on the density functional theory to investigate the properties of ZnO-PLGA systems in detail. First, three different stable polymorphs of ZnO were considered. Subsequently, the abilities of each system to absorb the PLGA copolymer were thoroughly investigated, taking into account the modulation of electrical, optical, and mechanical properties. Significant differences between ZnO and PLGA systems have been found; in this study, we remark on the potential use of these models and the necessity to describe crucial surface aspects that might be challenging to observe with experimental approaches but which can modulate the performance of nanocomposites.

2.
ACS Chem Biol ; 19(4): 839-854, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38552205

RESUMEN

In nonsmall cell lung cancer (NSCLC), as well as in other tumors, the targeted therapy is mainly represented by tyrosine kinase inhibitors (TKIs), small molecules able to target oncogenic driver alterations affecting the gene encoding the epidermal growth factor receptor (EGFR). Up to now, several different TKIs have been developed. However, cancer cells showed an incredible adaptive tumor response to the inhibition of the sequentially mutated EGFR (EGFRM+), triggering the need to explore novel pharmacochemical strategies. This Review summarizes the recent efforts in the development of new reversible next-generation EGFR TKIs to fight the resistance against T790M and C797S mutations. Specifically, after giving an overview of the role of the EGFR's signaling pathways in cancer progression, we are going to discuss the most relevant approved drugs and drug candidates in terms of chemical structure, binding modalities, and their potency and selectivity against the mutated EGFR over the wild-type form. This could provide important guidelines and rationale for the discovery and iterative development of new drugs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/metabolismo , Resistencia a Antineoplásicos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química
3.
Nanoscale Adv ; 6(5): 1548-1555, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38419871

RESUMEN

Self-consistent charge density functional tight-binding (DFTB) calculations have been performed to investigate the electrical properties and transport behavior of asymmetric graphene devices (AGDs). Three different nanodevices constructed of different necks of 8 nm, 6 nm and 4 nm, named Graphene-N8, Graphene-N6 and Graphene-N4, respectively, have been proposed. All devices have been tested under two conditions of zero gate voltage and an applied gate voltage of +20 V using a dielectric medium of 3.9 epsilon interposed between the graphene and the metallic gate. As expected, the results of AGD diodes exhibited strong asymmetric I(V) characteristic curves in good agreement with the available experimental data. Our predictions implied that Graphene-N4 would achieve great asymmetry (A) of 1.40 at |VDS| = 0.2 V with maximum transmittance (T) of 6.72 in the energy range 1.30 eV. More importantly, while the A of Graphene-N4 was slightly changed by applying the gate voltage, Graphene-N6/Graphene-N8 showed a significant effect with their A increased from 1.20/1.03 under no gate voltage (NGV) to 1.30/1.16 under gate voltage (WGV) conditions. Our results open up unprecedented numerical prospects for designing tailored geometric diodes.

4.
ACS Omega ; 8(50): 48292-48303, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38144094

RESUMEN

The search for polyphenol-based materials with antioxidant activity is a growing research area in the biomedical field. To obtain an efficient and stable nanoantioxidant, a novel biosystem was designed by integrating a lipophilic derivative of epigallocatechin-3-gallate (named EGCG-C18) on the surface of poly(lactic-co-glycolic acid) (PLGA). Poly(vinyl alcohol) (PVA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG2000) were selected as polymeric and lipidic stabilizers, respectively, and their influence on both physical properties and the antioxidant activity of nanoantioxidant was investigated by a combined in silico and experimental approach. Full-atom molecular dynamics (MD) simulations were carried out to describe the different self-assembly processes of all components and the interactions that guided the EGCG-C18 insertion inside the PLGA matrix. Together with infrared spectroscopy results, the formation of an antioxidant lipid shell on the PLGA surface was clear. Dynamic light scattering and transmission electron microscopy showed that in the presence of DSPE-PEG2000, NPs were smaller than those treated with PVA. In addition, the different stabilizers used strongly influenced the ROS-scavenging ability of nanomaterials and this effect was strictly related to the molecular organization of EGCG-C18. MD showed that the apolar interaction between the alkyl chains of DSPE-PEG2000 and EGCG-C18 oriented the phenolic groups of the polyphenol toward the solvent, providing an ability of NP to scavenge hydroxyl radicals over to free EGCG-C18 and PLGA/PVA NPs. Finally, the ability of nanoantioxidants to protect human dermal fibroblasts from cell death induced by oxidative stress has been tested, revealing the high potential of these novel NPs as polyphenol-based materials.

5.
Nanoscale Adv ; 5(10): 2748-2755, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37205281

RESUMEN

Metal-insulator-metal (MIM) diodes are very interesting in many different applications exploiting environment-friendly renewable energy solutions. Moreover, since the dimensions of such devices are at the nanoscale, the size and the characteristics of their constitutive elements can drastically influence their macroscale performance. As it could be difficult to describe in detail the physical phenomena occurring among materials in nanoscale systems, in this work first-principles calculations have been used to study the structural and electrical properties of three different hafnium oxide (HfO2)-MIM diodes. These devices have been simulated at the atomistic level by interposing 3 nm of HfO2 between drain and source electrodes made of gold and platinum, respectively. The monoclinic and orthorhombic polymorphs of HfO2 have been considered to model different types of MIM diodes, and the interface geometries have been optimized to compute the current-voltage characteristics, reflecting the tunneling mechanisms occurring in such devices. The calculation of the transmission pathways has also been carried out to investigate the effects of atomistic coordinates despite the use of the same material. The results demonstrate the role of the Miller indices of metals and the influence of the HfO2 polymorphs on the MIM properties. In this study, the importance of interface phenomena on the measurable properties of the proposed devices has been investigated in detail.

6.
Molecules ; 28(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37050002

RESUMEN

Five heterocyclic derivatives were synthesized by functionalization of a flavone nucleus with an aminophenoxy moiety. Their cytotoxicity was investigated in vitro in two models of human non-small cell lung cancer (NSCLC) cells (A549 and NCI-H1975) by using MTT assay and the results compared to those obtained in healthy fibroblasts as a non-malignant cell model. One of the aminophenoxy flavone derivatives (APF-1) was found to be effective at low micromolar concentrations in both lung cancer cell lines with a higher selective index (SI). Flow cytometric analyses showed that APF-1 induced apoptosis and cell cycle arrest in the G2/M phase through the up-regulation of p21 expression. Therefore, the aminophenoxy flavone-based compounds may be promising cancer-selective agents and could serve as a base for further research into the design of flavone-based anticancer drugs.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Flavonas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Flavonas/farmacología , Flavonas/uso terapéutico , Apoptosis , Proliferación Celular , Células A549
7.
Nanomaterials (Basel) ; 13(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37110904

RESUMEN

MoO3 and MoO2 systems have attracted particular attention for many widespread applications thanks to their electronic and optical peculiarities; from the crystallographic point of view, MoO3 adopts a thermodynamically stable orthorhombic phase (α-MoO3) belonging to the space group Pbmn, while MoO2 assumes a monoclinic arrangement characterized by space group P21/c. In the present paper, we investigated the electronic and optical properties of both MoO3 and MoO2 by using Density Functional Theory calculations, in particular, the Meta Generalized Gradient Approximation (MGGA) SCAN functional together with the PseudoDojo pseudopotential, which were used for the first time to obtain a deeper insight into the nature of different Mo-O bonds in these materials. The calculated density of states, the band gap, and the band structure were confirmed and validated by comparison with already available experimental results, while the optical properties were validated by recording optical spectra. Furthermore, the calculated band-gap energy value for the orthorhombic MoO3 showed the best match to the experimental value reported in the literature. All these findings suggest that the newly proposed theoretical techniques reproduce the experimental evidence of both MoO2 and MoO3 systems with high accuracy.

8.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769183

RESUMEN

Glaucoma, a major ocular neuropathy originating from a progressive degeneration of retinal ganglion cells, is often associated with increased intraocular pressure (IOP). Daily IOP fluctuations are physiologically influenced by the antioxidant and signaling activities of melatonin. This endogenous modulator has limited employment in treating altered IOP disorders due to its low stability and bioavailability. The search for low-toxic compounds as potential melatonin agonists with higher stability and bioavailability than melatonin itself could start only from knowing the molecular basis of melatonergic activity. Thus, using a computational approach, we studied the melatonin binding toward its natural macromolecular targets, namely melatonin receptors 1 (MT1) and 2 (MT2), both involved in IOP signaling regulation. Besides, agomelatine, a melatonin-derivative agonist and, at the same time, an atypical antidepressant, was also included in the study due to its powerful IOP-lowering effects. For both ligands, we evaluated both stability and ligand positioning inside the orthosteric site of MTs, mapping the main molecular interactions responsible for receptor activation. Affinity values in terms of free binding energy (ΔGbind) were calculated for the selected poses of the chosen compounds after stabilization through a dynamic molecular docking protocol. The results were compared with experimental in vivo effects, showing a higher potency and more durable effect for agomelatine with respect to melatonin, which could be ascribed both to its higher affinity for hMT2 and to its additional activity as an antagonist for the serotonin receptor 5-HT2c, in agreement with the in silico results.


Asunto(s)
Melatonina , Receptor de Melatonina MT1 , Receptores de Melatonina , Simulación del Acoplamiento Molecular , Receptor de Melatonina MT1/metabolismo , Melatonina/metabolismo , Ligandos , Receptor de Melatonina MT2/metabolismo
9.
Nanotechnology ; 34(20)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36801826

RESUMEN

In this work, we present the design, atomistic/circuit/electromagnetic simulations, and the experimental results for graphene monolayer/zirconium-doped hafnium oxide (HfZrO) ultra-thin ferroelectric-based field effect transistors fabricated at the wafer scale, regarding the pyroelectricity generation directly from microwave signals, at room temperature and below it, namely at 218 K and at 100 K. The transistors work like energy harvesters, i.e. they collect low-power microwave energy and transform it into DC voltages with a maximum amplitude between 20 and 30 mV. The same devices function as microwave detectors in the band 1-10.4 GHz and at very low input power levels not exceeding 80µW when they are biased by using a drain voltage, with average responsivity values in the range 200-400 mV mW-1.

10.
J Biomol Struct Dyn ; 41(14): 6492-6501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35968630

RESUMEN

The discovery of mutations within the kinase domain of the epidermal growth factor receptor (EGFR) gene has enabled a new era of targeted therapy in non-small cell lung cancer (NSCLC). Drugs belonging to the family of tyrosine kinase inhibitors (TKIs) are designed to bind ATP binding cleft, anyway, the occurrence of aminoacidic mutations decreases the effectiveness of the antitumoral treatment. Despite many efforts has been already made, the impact of the mutations on conformation and stability of EGFR-ATP complexes is still not fully understood. Therefore, we investigated the effect of mutations that leads to changes in Michaelis-Menten constant (Km) using dynamic docking simulations. We focused on six different EGFR forms in relation to different mutation states, then we found a good correlation between the calculated ATP affinities and Km values. Moreover, since dynamic switching of TK-EGFR from the inactive towards the active state is known to regulate the kinase activity, we observed that ATP induces the inwards movement of the αC-helix with the Lys745 close to Glu762 in all cases. This means that ATP binding should be the first step in promoting the conformational shift to the active state. Finally, we highlighted for the first time the key contribution of water hydrogen bond and water-bridge networks in the modulation of ATP affinity. The identified mutant-specific ATP binding patterns and conformational features could be much useful to guide cancer therapy and develop more personalized medicine. Communicated by Ramaswamy H. Sarma.

11.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500946

RESUMEN

HfO2 can assume different crystalline structures, such as monoclinic, orthorhombic, and cubic polymorphs, each one characterized by unical properties. The peculiarities of this material are also strongly related to the presence of doping elements in the unit cell. Thus, the present paper has the main purpose of studying and comparing twelve different systems characterized by diverse polymorphs and doping percentages. In particular, three different crystalline structures were considered: the monoclinic P21/c, the orthorhombic Pca21, and the cubic Fm3¯m phases of HfO2. Each one has been studied by using Y as a doping agent with three different contents: 0% Y:HfO2, 8% Y:HfO2, 12% Y:HfO2, and 16% Y:HfO2. For all the systems, density functional theory (DFT) methods based on PBE/GGA, and on the HSE hybrid functionals were used to optimize the geometry as well as to study their optical properties. Depending on the polymorphs, Y affects the formation energy in different ways and causes changes in the optical properties. When the percentage of Y did not exceed 12%, a stabilization of the cubic phase fraction and an increase of the dielectric constant was observed. Additionally, the calculated optical bandgap energies and the refractive index are examined to provide an overview of the systems and are compared with experimental data. The bandgaps obtained are in perfect agreement with the experimental values and show a slight increase as the doping percentage grows, while only minor differences are found between the three polymorphs in terms of both refractive index and optical band gap. The adopted first principles study generates a reasonable prediction of the physical-chemical properties of all the systems, thus identifying the effects of doping phenomena.

12.
Antioxidants (Basel) ; 11(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358501

RESUMEN

Glyoxalase 2 is a mitochondrial and cytoplasmic protein belonging to the metallo-ß-lactamase family encoded by the hydroxyacylglutathione hydrolase (HAGH) gene. This enzyme is the second enzyme of the glyoxalase system that is responsible for detoxification of the α-ketothaldehyde methylglyoxal in cells. The two enzymes glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2) form the complete glyoxalase pathway, which utilizes glutathione as cofactor in eukaryotic cells. The importance of Glo2 is highlighted by its ubiquitous distribution in prokaryotic and eukaryotic organisms. Its function in the system has been well defined, but in recent years, additional roles are emerging, especially those related to oxidative stress. This review focuses on Glo2 by considering its genetics, molecular and structural properties, its involvement in post-translational modifications and its interaction with specific metabolic pathways. The purpose of this review is to focus attention on an enzyme that, from the most recent studies, appears to play a role in multiple regulatory pathways that may be important in certain diseases such as cancer or oxidative stress-related diseases.

13.
RSC Adv ; 12(48): 31255-31263, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36349030

RESUMEN

A VO2(B) polymorph has been thoroughly investigated by means of density functional theory (DFT) calculations to evaluate the structure, Raman spectrum, cohesive energy, phonon band structure, an delectronic and optical properties. Among the computed Raman modes, eight of them have been assigned to the VO2(B) structure in full agreement with the corresponding experimental spectra. The minimized structure of the VO2(B) polymorph indicated the presence of negative frequencies in its phonon dispersion curves, confirming the dynamic instability of this material. Herein, the combination of generalized gradient approximation (GGA)/PBEsol with a hybrid HSE functional has been employed to perform ab initio calculations on VO2(B), since the conventional semi-local DFT calculations are believed to underestimate the band gap of materials. By considering the electronic structure calculations, for the first time, we found that the calibration of the PBEsol functional can efficiently model the metallic-like properties of VO2(B) with a band gap of 0.26 eV, while the corresponding electronic bandgap of VO2(B) based on the HSE functional possesses a larger band gap of 0.67 eV. The prediction of optical characteristics of VO2(B) indicated that the optical conductivity of VO2(B) lies in the infrared region of light. This work strongly suggests the combination of GGA/PBEsol with HSE hybrid functionals to carefully describe the physical properties of smart materials exploitable in electronics and optoelectronics applications. The nanostructure of VO2(B) looks promising for IR photodetectors and smart windows applications as a semiconductor material with excellent optical features. It is predicted that in the future VO2(B) will continue to expand the envelope of its capabilities because of its remarkable properties.

14.
Nanoscale Adv ; 4(17): 3634-3646, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36134342

RESUMEN

We have studied the structural, electronic, magnetic, and optical properties of the VO2(B) polymorph using first-principles calculations based on density functional theory (DFT). This polymorph was found to display four optimized structures namely VO2(B)PP, VO2(B)LP, VO2(B)PPD, and VO2(B)LPD using the generalized gradient approximation (GGA) PBE exchange-correlation functional by including/excluding van der Waals interaction. Our derivation provides a theoretical justification for adding an on-site Coulomb U value in the conventional DFT calculations to allow a direct comparison of the two methods. We predicted a zero bandgap of the VO2(B) structure based on GGA/PBE. However, by GGA/PBE + U, we found accurate bandgap values of 0.76, 0.66, and 0.70 eV for VO2(B)PP, VO2(B)LP, and VO2(B)PPD, respectively. The results obtained from DFT + U were accompanied by a structural transition from the metallic to semiconductor property. Here, we verified the non-magnetic characteristic of the monoclinic VO2(B) phase with some available experimental and theoretical data. However, the debate on the magnetic property of this polymorph remains unresolved. Imaginary and real parts of the dielectric function, as computed with the GGA/PBE functional and the GGA/PBE + U functional, were also reported. The first absorption peaks of all considered geometries in the imaginary part of the dielectric constants indicated that the VO2(B) structure could perfectly absorb infrared light. The computed static dielectric constants with positive values, as derived from the optical properties, confirmed the conductivity of this material. Among the four proposed geometries of VO2(B) in this study, the outcomes obtained by VO2(B)PPD reveal good results owing to the excellent consistency of its bandgap, magnetic and optical properties with other experimental and theoretical observations. The theoretical framework in our study will provide useful insight for future practical applications of the VO2(B) polymorph in electronics and optoelectronics.

15.
Org Biomol Chem ; 20(29): 5784-5795, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35822625

RESUMEN

The protection of lipid membranes against oxidation avoids diseases associated with oxidative stress. As a strategy to contrast it, functionalized lipids with antioxidant activity are used to become part of membranes thus protecting them. For this purpose, a lipophilic edaravone derivative has been synthesized, adding a C18 saturated chain to the original structure. The antioxidant activity of C18-Edv has been demonstrated in our previous work. In this study, molecular dynamics simulations have been performed to define the effects of NaCl, MgCl2, KCl, and CaCl2 salts on a palmitoyl-oleoyl-sn-glycero-phosphocholine (POPC) lipid bilayer encapsulating C18-Edv. The results showed how different salts influence POPC lateral diffusion, and the movements of C18-Edv heads, which are antioxidant moieties, were correlated to the ability of C18-Edv molecules to protect membranes. MgCl2 showed a negative impact leading to C18-Edv clusterization and membrane stretching, while KCl and NaCl showed a moderate influence on the mixed lipid membrane structure. CaCl2 increased the exposure of the C18-Edv heads to the lipid-water interface, resulting in the salt with a higher propensity to guarantee protection against radicals in the aqueous phase. Finally, C18-Edv-POPC liposomes have been prepared following the simulation conditions, and then an experimental Oxygen Radical Absorbance Capacity (ORAC) assay has been performed to confirm the in silico predicted results.


Asunto(s)
Antioxidantes , Fosfatidilcolinas , Antioxidantes/farmacología , Cloruro de Calcio , Edaravona , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fosfatidilcolinas/química , Sales (Química) , Cloruro de Sodio , Agua/química
16.
Materials (Basel) ; 15(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744234

RESUMEN

HfO2 shows different polymorphs, including monoclinic and orthorhombic ones, that exhibit singular properties. Moreover, the character of HfO2 is also influenced by the Zr atoms as a doping agent. Here, an extensive study of the monoclinic P21/c and the orthorhombic Pca21 polymorphs of HfO2, Hf0.75Zr0.25O2, and Hf0.5Zr0.5O2 is reported. For all six systems, density functional theory (DFT) methods based on generalized gradient approximations (GGAs) were first used; then the GGA + U method was settled and calibrated to describe the electrical and optical properties of polymorphs and the responses to the oxygen vacancies. Zr had different effects in relation to the polymorph; moreover, the amount of Zr led to important differences in the optical properties of the Pca21 polymorph. Finally, oxygen vacancies were investigated, showing an important modulation of the properties of HfxZryO2 nanostructures. The combined GGA and GGA + U methods adopted in this work generate a reasonable prediction of the physicochemical properties of o- and m-HfxZryO2, identifying the effects of doping phenomena.

17.
Cells ; 11(8)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35455951

RESUMEN

A major player in the homeostatic response to hypoxia is the hypoxia-inducible factor (HIF)-1 that transactivates a number of genes involved in neovessel proliferation in response to low oxygen tension. In the retina, hypoxia overstimulates ß-adrenoceptors (ß-ARs) which play a key role in the formation of pathogenic blood vessels. Among ß-ARs, ß3-AR expression is increased in proliferating vessels in concomitance with increased levels of HIF-1α and vascular endothelial growth factor (VEGF). Whether, similarly to VEGF, hypoxia-induced ß3-AR upregulation is driven by HIF-1 is still unknown. We used the mouse model of oxygen-induced retinopathy (OIR), an acknowledged model of retinal angiogenesis, to verify the hypothesis of ß3-AR transcriptional regulation by HIF-1. Investigation of ß3-AR regulation over OIR progression revealed that the expression profile of ß3-AR depends on oxygen tension, similar to VEGF. The additional evidence that HIF-1α stabilization decouples ß3-AR expression from oxygen levels further indicates that HIF-1 regulates the expression of the ß3-AR gene in the retina. Bioinformatics predicted the presence of six HIF-1 binding sites (HBS #1-6) upstream and inside the mouse ß3-AR gene. Among these, HBS #1 has been identified as the most suitable HBS for HIF-1 binding. Chromatin immunoprecipitation-qPCR demonstrated an effective binding of HIF-1 to HBS #1 indicating the existence of a physical interaction between HIF-1 and the ß3-AR gene. The additional finding that ß3-AR gene expression is concomitantly activated indicates the possibility that HIF-1 transactivates the ß3-AR gene. Our results are indicative of ß3-AR involvement in HIF-1-mediated response to hypoxia.


Asunto(s)
Factor 1 Inducible por Hipoxia , Receptores Adrenérgicos beta 3 , Enfermedades de la Retina , Factor A de Crecimiento Endotelial Vascular , Animales , Hipoxia/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Retina/metabolismo , Enfermedades de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
Polymers (Basel) ; 14(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35458376

RESUMEN

It is now well recognized that the production of petroleum-based packaging materials has created serious ecological problems for the environment due to their resistance to biodegradation. In this context, substantial research efforts have been made to promote the use of biodegradable films as sustainable alternatives to conventionally used packaging materials. Among several biopolymers, poly(lactide) (PLA) has found early application in the food industry thanks to its promising properties and is currently one of the most industrially produced bioplastics. However, more efforts are needed to enhance its performance and expand its applicability in this field, as packaging materials need to meet precise functional requirements such as suitable thermal, mechanical, and gas barrier properties. In particular, improving the mass transfer properties of materials to water vapor, oxygen, and/or carbon dioxide plays a very important role in maintaining food quality and safety, as the rate of typical food degradation reactions (i.e., oxidation, microbial development, and physical reactions) can be greatly reduced. Since most reviews dealing with the properties of PLA have mainly focused on strategies to improve its thermal and mechanical properties, this work aims to review relevant strategies to tailor the barrier properties of PLA-based materials, with the ultimate goal of providing a general guide for the design of PLA-based packaging materials with the desired mass transfer properties.

19.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112171, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34736221

RESUMEN

The use of glyceryl monooleate (GMO)-based nanoparticles has not yet been explored in overcoming the low bioavailability of Epigallocatechin-3-gallate (EGCG), a green tea polyphenol with a known anticancer activity. Since the inclusion of a guest molecule can affect the curvature and the supramolecular structure of fully hydrated GMO-based phase, the phase behavior of bulk and dispersed liquid crystalline systems containing EGCG were explored by Small Angle Neutron Scattering and X-Ray Diffraction experiments. Molecular Dynamic Simulations showed how the interaction of EGCG with polar heads of GMO strongly affects the curvature and packing of GMO phase. The EGCG encapsulation efficiency was determined in the nanodispersions and their size studied by Dynamic Light Scattering and Atomic Force Microscopy. A nanodispersed formulation has been optimized with a cytotoxic effect more than additive of GMO and EGCG.


Asunto(s)
Catequina , Catequina/análogos & derivados , Glicéridos ,
20.
Colloids Surf B Biointerfaces ; 210: 112217, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34836703

RESUMEN

The influence of a lipophilic derivative of Edaravone (C18Edv) on a POPC liposomal bilayer has been investigated by a combined computational-experimental approach. The order and hydration degree of three different systems composed by 10%, 20% and 40% in w/w percentage of C18Edv respect to POPC were investigated through Molecular Dynamics (MD) simulations and fluorescence spectroscopy experiments. Dynamic Light Scattering measurements showed how the presence of different amounts of C18EdV determines differences on liposome size and stability. The survey revealed that the content of lipophilic antioxidant tunes liposome rigidity and influences cellular uptake and antioxidant activity which are maximized for formulation containing 20% of C18Edv.


Asunto(s)
Antioxidantes , Liposomas , Antioxidantes/farmacología , Fenómenos Químicos , Edaravona , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA