Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38135960

RESUMEN

Sound generation in human phonation and the underlying fluid-structure-acoustic interaction that describes the sound production mechanism are not fully understood. A previous experimental study, with a silicone made vocal fold model connected to a straight vocal tract pipe of fixed length, showed that vibroacoustic coupling can cause a deviation in the vocal fold vibration frequency. This occurred when the fundamental frequency of the vocal fold motion was close to the lowest acoustic resonance frequency of the pipe. What is not fully understood is how the vibroacoustic coupling is influenced by a varying vocal tract length. Presuming that this effect is a pure coupling of the acoustical effects, a numerical simulation model is established based on the computation of the mechanical-acoustic eigenvalue. With varying pipe lengths, the lowest acoustic resonance frequency was adjusted in the experiments and so in the simulation setup. In doing so, the evolution of the vocal folds' coupled eigenvalues and eigenmodes is investigated, which confirms the experimental findings. Finally, it was shown that for normal phonation conditions, the mechanical mode is the most efficient vibration pattern whenever the acoustic resonance of the pipe (lowest formant) is far away from the vocal folds' vibration frequency. Whenever the lowest formant is slightly lower than the mechanical vocal fold eigenfrequency, the coupled vocal fold motion pattern at the formant frequency dominates.

2.
Bioengineering (Basel) ; 10(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38002437

RESUMEN

Obstructive Sleep Apnea Syndrome (OSAS) is a common sleep-related disorder. It is characterized by recurrent partial or total collapse of pharyngeal upper airway accompanied by induced vibrations of the soft tissues (e.g., soft palate). The knowledge of the tissue behavior subject to a particular airflow is relevant for realistic clinic applications. However, in-vivo measurements are usually impractical. The goal of the present study is to develop a 3D fluid-structure interaction model for the human uvulopalatal system relevant to OSA based on simplified geometries under physiological conditions. Numerical simulations are performed to assess the influence of the different breathing conditions on the vibrational dynamics of the flexible structure. Meanwhile, the fluid patterns are investigated for the coupled fluid-structure system as well. Increasing the respiratory flow rate is shown to induce larger structural deformation. Vortex shedding induced resonance is not observed due to the large discrepancy between the flow oscillatory frequency and the natural frequency of the structure. The large deformation for symmetric breathing case under intensive respiration is mainly because of the positive feedback from the pressure differences on the top and the bottom surfaces of the structure.

3.
Bioengineering (Basel) ; 10(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37892946

RESUMEN

Subjects with bicuspid aortic valves (BAV) are at risk of developing valve dysfunction and need regular clinical imaging surveillance. Management of BAV involves manual and time-consuming segmentation of the aorta for assessing left ventricular function, jet velocity, gradient, shear stress, and valve area with aortic valve stenosis. This paper aims to employ machine learning-based (ML) segmentation as a potential for improved BAV assessment and reducing manual bias. The focus is on quantifying the relationship between valve morphology and vortical structures, and analyzing how valve morphology influences the aorta's susceptibility to shear stress that may lead to valve incompetence. The ML-based segmentation that is employed is trained on whole-body Computed Tomography (CT). Magnetic Resonance Imaging (MRI) is acquired from six subjects, three with tricuspid aortic valves (TAV) and three functionally BAV, with right-left leaflet fusion. These are used for segmentation of the cardiovascular system and delineation of four-dimensional phase-contrast magnetic resonance imaging (4D-PCMRI) for quantification of vortical structures and wall shear stress. The ML-based segmentation model exhibits a high Dice score (0.86) for the heart organ, indicating a robust segmentation. However, the Dice score for the thoracic aorta is comparatively poor (0.72). It is found that wall shear stress is predominantly symmetric in TAVs. BAVs exhibit highly asymmetric wall shear stress, with the region opposite the fused coronary leaflets experiencing elevated tangential wall shear stress. This is due to the higher tangential velocity explained by helical flow, proximally of the sinutubal junction of the ascending aorta. ML-based segmentation not only reduces the runtime of assessing the hemodynamic effectiveness, but also identifies the significance of the tangential wall shear stress in addition to the axial wall shear stress that may lead to the progression of valve incompetence in BAVs, which could guide potential adjustments in surgical interventions.

4.
Sci Rep ; 13(1): 9298, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291334

RESUMEN

The behaviour of collapsed or stenotic vessels in the human body can be studied by means of simplified geometries like a collapsible tube. The objective of this work is to determine the value of the buckling critical pressure of a collapsible tube by employing Landau's theory of phase transition. The methodology is based on the implementation of an experimentally validated 3D numerical model of a collapsible tube. The buckling critical pressure is estimated for different values of geometric parameters of the system by treating the relation between the intramural pressure and the area of the central cross-section as the order parameter function of the system. The results show the dependence of the buckling critical pressures on the geometric parameters of a collapsible tube. General non-dimensional equations for the buckling critical pressures are derived. The advantage of this method is that it does not require any geometric assumption, but it is solely based on the observation that the buckling of a collapsible tube can be treated as a second-order phase transition. The investigated geometric and elastic parameters are sensible for biomedical application, with particular interest to the study of the bronchial tree under pathophysiological conditions like asthma.


Asunto(s)
Reología , Humanos , Matemática
5.
JASA Express Lett ; 1(5): 054801, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-36154111

RESUMEN

This Letter reports evidence suggesting a representation system for transient waves with band limited spectra, referred to here as localized waves in the space-time and wavenumber-frequency domains. A theoretical analysis with a transient monopole shows that the wavenumber-frequency pressure spectrum is distributed over hyperbolic regions of propagating waves and evanescent waves. An experimental analysis is performed, applying dictionary learning to reverberant sound fields measured with a microphone array in three rooms. The learned components appear to be related by analytical transformations in the spectra, suggesting a partitioning characterized by hyperbolic dispersion curves and multiple directions and times of arrival.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA