Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Environ Contam Toxicol ; 67(3): 453-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25103773

RESUMEN

The aim of this research was to generate data on the mechanisms of toxicity of copper [Cu (4-12 µg/L)] and nickel [Ni (33-40 µg/L)] during continuous sublethal exposure in seawater (32 ppt, 15 °C) in a sensitive test organism (Strongylocentrotus purpuratus) at its most sensitive life stage (developing embryo). Whole-body ions [calcium (Ca), sodium (Na), potassium (K), and magnesium (Mg)], metal burdens, Ca uptake, and Ca ATPase activity were measured every 12 h during the first 72-84 h of development. Ionoregulatory disruption was clearly an important mechanism of toxicity for both metals and occurred with minimal metal bioaccumulation. Most noteworthy was a significant disruption of Ca homeostasis, which was evident from an inhibition of unidirectional Ca uptake rates, whole-body Ca accumulation, and Ca ATPase activity intermittently during 72-84 h of development. At various times, Cu- and Ni-exposed embryos also displayed lower levels of K and increased levels of Na suggesting inhibition of Na/K ATPase activity. Greater levels of Mg during initial stages of development in Cu-exposed embryos were also observed and were considered a possible compensatory mechanism for disruptions to Ca homeostasis because both of these ions are important constituents of the developing spicule. Notably, most of these effects occurred during the initial stages of development but were reversed by 72-84 h. We therefore propose that it is of value to study the toxic impacts of contaminants periodically during development before the traditional end point of 48-72 h.


Asunto(s)
Cobre/toxicidad , Embrión no Mamífero/efectos de los fármacos , Níquel/toxicidad , Strongylocentrotus purpuratus/embriología , Contaminantes Químicos del Agua/toxicidad , Animales , Desarrollo Embrionario/efectos de los fármacos , Agua de Mar/química
2.
Aquat Toxicol ; 146: 220-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24326189

RESUMEN

In order to understand sublethal mechanisms of lead (Pb) and zinc (Zn) toxicity, developing sea urchins were exposed continuously from 3h post-fertilization (eggs) to 96 h (pluteus larvae) to 55 (±2.4) µgPb/L or 117 (±11)µgZn/L, representing ~ 70% of the EC50 for normal 72 h development. Growth, unidirectional Ca uptake rates, whole body ion concentrations (Na, K, Ca, Mg), Ca(2+) ATPase activity, and metal bioaccumulation were monitored every 12h over this period. Pb exhibited marked bioaccumulation whereas Zn was well-regulated, and both metals had little effect on growth, measured as larval dry weight, or on Na, K, or Mg concentrations. Unidirectional Ca uptake rates (measured by (45)Ca incorporation) were severely inhibited by both metals, resulting in lower levels of whole body Ca accumulation. The greatest disruption occurred at gastrulation. Ca(2+) ATPase activity was also significantly inhibited by Zn but not by Pb. Interestingly, embryos exposed to Pb showed some capacity for recovery, as Ca(2+)ATPase activities increased, Ca uptake rates returned to normal intermittently, and whole body Ca levels were restored to control values by 72-96 h of development. This did not occur with Zn exposure. Both Pb and Zn rendered their toxic effects through disruption of Ca homeostasis, though likely through different proximate mechanisms. We recommend studying the toxicity of these contaminants periodically throughout development as an effective way to detect sublethal effects, which may not be displayed at the traditional toxicity test endpoint of 72 h.


Asunto(s)
Plomo/toxicidad , Strongylocentrotus purpuratus/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Zinc/toxicidad , Adenosina Trifosfatasas/metabolismo , Animales , Calcio/metabolismo , Embrión no Mamífero/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Homeostasis/efectos de los fármacos , Larva/efectos de los fármacos
3.
Artículo en Inglés | MEDLINE | ID: mdl-23732050

RESUMEN

Ionic status during early development was investigated in the purple sea urchin. Whole body cation concentrations (Ca(2+), Na(+), K(+), Mg(2+)), unidirectional Ca(2+) uptake rates measured with (45)Ca(2+), Ca(2+)-ATPase activity, and growth were examined at 12h intervals over the first 96h of development. Whole body Ca(2+) concentration was low initially but increased steadily by >15-fold through to the pluteus stage. Whole body Mg(2+), K(+) and Na(+) levels exhibited diverse patterns, but all increased at 72-96h. Ca(2+) uptake rates were low during initial cell cleavages at 12h but increased greatly at blastulation (24h) and then again at gastrulation (48h), declining thereafter in the pluteus stage, but increasing slightly at 96h. Ca(2+)-ATPase activity was initially low but increased at blastulation through gastrulation (24-48h) but declined thereafter in the pluteus stage. Embryonic weights did not change over most of development, but were significantly higher at 96h. Overall, the gastrulation stage displayed the most pronounced changes, as Ca(2+) uptake and accumulation and Ca(2+)-ATPase levels were the highest at this stage, likely involved in mineralization of the spicule. Biomarkers of Ca(2+) metabolism may be good endpoints for potential future toxicity studies.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Strongylocentrotus purpuratus/metabolismo , Animales , Gastrulación , Magnesio/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Strongylocentrotus purpuratus/embriología
4.
Environ Toxicol Chem ; 29(10): 2297-303, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20872694

RESUMEN

Chronic Cu toxicity was evaluated in the euryhaline copepod Acartia tonsa. Male and female copepods were exposed (6 d) separately to different combinations of Cu concentration and water salinity (5, 15, and 30 ppt) using different routes of exposure (waterborne, waterborne plus dietborne, and dietborne). After exposure, groups of one male and three female copepods were allowed to reproduce for 24 h. In control copepods, egg production augmented with increasing water salinity. However, egg hatching rate did not change. Copper exposure reduced egg production and hatching rate in all water salinities tested, but the reproductive response was dependent on the route of Cu exposure. Median effective concentration (EC50) values for egg production after waterborne exposure were 9.9, 36.8, and 48.8 µg/L dissolved Cu at water salinities of 5, 15, and 30 ppt, respectively. For waterborne plus dietborne exposure, they were significantly higher (40.1, 63.7, and 109.9 µg /L, respectively). After dietborne exposure, approximately 40% decrease in egg production was observed, independently of Cu concentration and water salinity tested. At water salinities of 5 and 30 ppt, egg hatching rate reduced after waterborne exposure, together or not with the dietborne exposure. At water salinity of 15 ppt, Cu toxicity was only observed after dietborne exposure. Data indicate that egg production is a more reliable reproductive endpoint to measure chronic Cu toxicity in copepods than egg hatching rate in a wide range of water salinities. They also suggest that both water salinity and route of Cu exposure should be taken into account in the development of a chronic biotic ligand model version for estuarine and marine environments.


Asunto(s)
Copépodos/efectos de los fármacos , Cobre/toxicidad , Cloruro de Sodio/análisis , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...