Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3945, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730238

RESUMEN

Proline-rich antimicrobial peptides (PrAMPs) inhibit bacterial protein biosynthesis by binding to the polypeptide exit tunnel (PET) near the peptidyl transferase center. Api137, an optimized derivative of honeybee PrAMP apidaecin, inhibits protein expression by trapping release factors (RFs), which interact with stop codons on ribosomes to terminate translation. This study uses cryo-EM, functional assays and molecular dynamic (MD) simulations to show that Api137 additionally occupies a second binding site near the exit of the PET and can repress translation independently of RF-trapping. Api88, a C-terminally amidated (-CONH2) analog of Api137 (-COOH), binds to the same sites, occupies a third binding pocket and interferes with the translation process presumably without RF-trapping. In conclusion, apidaecin-derived PrAMPs inhibit bacterial ribosomes by multimodal mechanisms caused by minor structural changes and thus represent a promising pool for drug development efforts.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Simulación de Dinámica Molecular , Ribosomas , Ribosomas/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Biosíntesis de Proteínas , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Unión Proteica , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología
2.
iScience ; 26(7): 107085, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37361875

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) Omicron variant sub-lineages spread rapidly worldwide, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for effective anti-SARS-CoV-2 agents against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production, and potential for delivery via inhalation. Here, we characterize the receptor binding domain (RBD)-specific nanobody W25 and show superior neutralization activity toward Omicron sub-lineages in comparison to all other SARS-CoV2 variants. Structure analysis of W25 in complex with the SARS-CoV2 spike glycoprotein shows that W25 engages an RBD epitope not covered by any of the antibodies previously approved for emergency use. In vivo evaluation of W25 prophylactic and therapeutic treatments across multiple SARS-CoV-2 variant infection models, together with W25 biodistribution analysis in mice, demonstrates favorable pre-clinical properties. Together, these data endorse W25 for further clinical development.

3.
Nat Commun ; 14(1): 898, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36797249

RESUMEN

Ribosome biogenesis is a fundamental multi-step cellular process in all domains of life that involves the production, processing, folding, and modification of ribosomal RNAs (rRNAs) and ribosomal proteins. To obtain insights into the still unexplored early assembly phase of the bacterial 50S subunit, we exploited a minimal in vitro reconstitution system using purified ribosomal components and scalable reaction conditions. Time-limited assembly assays combined with cryo-EM analysis visualizes the structurally complex assembly pathway starting with a particle consisting of ordered density for only ~500 nucleotides of 23S rRNA domain I and three ribosomal proteins. In addition, our structural analysis reveals that early 50S assembly occurs in a domain-wise fashion, while late 50S assembly proceeds incrementally. Furthermore, we find that both ribosomal proteins and folded rRNA helices, occupying surface exposed regions on pre-50S particles, induce, or stabilize rRNA folds within adjacent regions, thereby creating cooperativity.


Asunto(s)
Proteínas Ribosómicas , Ribosomas , Microscopía por Crioelectrón , Ribosomas/metabolismo , Proteínas Ribosómicas/metabolismo , ARN Ribosómico 23S/genética , Nucleótidos/metabolismo
4.
EMBO J ; 42(5): e112351, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762436

RESUMEN

Human cytomegalovirus (CMV) is a ubiquitously distributed pathogen whose rodent counterparts such as mouse and rat CMV serve as common infection models. Here, we conducted global proteome profiling of rat CMV-infected cells and uncovered a pronounced loss of the transcription factor STAT2, which is crucial for antiviral interferon signalling. Via deletion mutagenesis, we found that the viral protein E27 is required for CMV-induced STAT2 depletion. Cellular and in vitro analyses showed that E27 exploits host-cell Cullin4-RING ubiquitin ligase (CRL4) complexes to induce poly-ubiquitylation and proteasomal degradation of STAT2. Cryo-electron microscopy revealed how E27 mimics molecular surface properties of cellular CRL4 substrate receptors called DCAFs (DDB1- and Cullin4-associated factors), thereby displacing them from the catalytic core of CRL4. Moreover, structural analyses showed that E27 recruits STAT2 through a bipartite binding interface, which partially overlaps with the IRF9 binding site. Structure-based mutations in M27, the murine CMV homologue of E27, impair the interferon-suppressing capacity and virus replication in mouse models, supporting the conserved importance of DCAF mimicry for CMV immune evasion.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Animales , Humanos , Ratones , Ratas , Microscopía por Crioelectrón , Infecciones por Citomegalovirus/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Interferones/metabolismo , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Receptores de Interleucina-17/metabolismo
5.
J Neurophysiol ; 124(3): 822-832, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783591

RESUMEN

Rodents and other mammals acquire sensory information by precisely orchestrated head, whisker, and respiratory movements. We have, however, only limited information about integration of these signals. In the somatosensory domain, the integration of somatosensory information with other modalities is particularly pertinent for body parts such as eyes, ears, and nose, which serve another modality. Here we analyzed the nose/nostril representation in the rodent somatosensory cortex. We identified the representation of the nose/nostril in the rat somatosensory cortex by receptive field mapping and subsequent histological reconstruction. In tangential somatosensory cortical sections, the rat nostril cortex was evident as a prominent stripe-like recess of layer 4 revealed by cytochrome-c oxidase reactivity or by antibodies against the vesicular glutamate-transporter-2 (identifying thalamic afferents). We compared flattened somatosensory cortices of various rodents including rats, mice, gerbils, chinchillas, and chipmunks. We found that such a nose/nostril module was evident as a region with thinned or absent layer 4 at the expected somatotopic position of the nostril. Extracellular spike activity was strongly modulated by respiration in the rat somatosensory cortex, and field potential recordings revealed a stronger locking of nostril recording sites to respiration than for whisker/barrel cortex recoding sites. We conclude that the rodent nose/nostril representation has a conserved architecture and specifically interfaces with respiration signals.NEW & NOTEWORTHY We characterized the rodent nose somatosensory cortex. The nostril representation appeared as a kind of "hole" (i.e., as a stripe-like recess of layer 4) in tangential cortical sections. Neural activity in nose somatosensory cortex was locked to respiration, and simultaneous field recordings indicate that this locking was specific to this region. Our results reveal previously unknown cytoarchitectonic and physiological properties of the rodent nose somatosensory cortex, potentially enabling it to integrate multiple sensory modalities.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Nariz/fisiología , Respiración , Roedores/anatomía & histología , Roedores/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Animales , Chinchilla , Gerbillinae , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Long-Evans , Sciuridae
6.
J Vis Exp ; (131)2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29443106

RESUMEN

The cortex of mammalian brains is parcellated into distinct substructures or modules. Cortical modules typically lie parallel to the cortical sheet, and can be delineated by certain histochemical and immunohistochemical methods. In this study, we highlight a method to isolate the cortex from mammalian brains and flatten them to obtain sections parallel to the cortical sheet. We further highlight selected histochemical and immunohistochemical methods to process these flattened tangential sections to visualize cortical modules. In the somatosensory cortex of various mammals, we perform cytochrome oxidase histochemistry to reveal body maps or cortical modules representing different parts of the body of the animal. In the medial entorhinal cortex, an area where grid cells are generated, we utilize immunohistochemical methods to highlight modules of genetically determined neurons which are arranged in a grid-pattern in the cortical sheet across several species. Overall, we provide a framework to isolate and prepare layer-wise flattened cortical sections, and visualize cortical modules using histochemical and immunohistochemical methods in a wide variety of mammalian brains.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Corteza Somatosensorial/fisiología , Animales , Masculino , Mamíferos
7.
J Comp Neurol ; 525(12): 2706-2718, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28472863

RESUMEN

The mammalian somatosensory cortex shows marked species-specific differences. How evolution in general and sexual selection in particular shape the somatosensory cortical body representation has not been delineated, however. Here we address this issue by a comparative analysis of genital cortex. Genitals are unique body parts in that they show sexual dimorphism, major changes in puberty and typically more pronounced species differences than other body parts (Hosken & Stockley, 2004). To study the evolution of genital cortex we flattened cortical hemispheres and assembled 104 complete body maps, revealed by cytochrome-oxidase activity in layer 4 of 8 rodent and 1 lagomorph species. In two species, we also performed antibody stainings against vesicular glutamate transporter-2, which suggested that cytochrome-oxidase maps closely mirror thalamic innervation. We consistently observed a protrusion between hindlimb and forelimb representation, which in rats (Lenschow et al., 2016) corresponds to the penis representation in males and the clitoris representation in females. Consistent with the idea that this protrusion corresponds to genital cortex, we observed a size increase of this protrusion during puberty. Species differed in external genital sexual dimorphism, but we observed a sexual monomorphism of the putative genital protrusion in all species, similar to previous observations in rats. The relative size of the putative genital protrusion varied more than 3-fold between species ranging from 0.5% of somatosensory cortex area in chipmunks to 1.7% in rats. This relative size of the genital protrusion co-varied with relative testicle size, an indicator of sperm competition and sexual selection.


Asunto(s)
Genitales , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Corteza Somatosensorial/fisiología , Animales , Cricetinae , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Miembro Anterior/inervación , Gerbillinae , Miembro Posterior/inervación , Masculino , Ratones , Conejos , Ratas , Sciuridae , Corteza Somatosensorial/metabolismo , Especificidad de la Especie , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...