Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 413(2): 299-314, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33123761

RESUMEN

The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach. Au, CuO, and ZnO NPs were extracted from three different plant leaf materials (lettuce, corn, and kale) selected for their agricultural relevance and differing characteristics. The enzyme-based approach was found to be unsuitable because of changes in the recovered NP size distribution of CuO NP. The MeOH-based extraction allowed reproducible extraction of the particle size distribution (PSD) without major alteration caused by the extraction. The type of leaf tissue did not significantly affect the recovered PSD. Total metal losses during the extraction process were largely due to the filtration step prior to analysis by spICP-MS, though this did not significantly affect PSD recovery. The methanol extraction worked with the three different NPs and plants tested and is suitable for studying the fate of labile metal-based nano-enabled agrichemicals.


Asunto(s)
Espectrometría de Masas/métodos , Metanol/química , Nanomedicina/métodos , Nanopartículas/química , Plantas/metabolismo , Agua/química , Cobre/química , Oro/química , Nanopartículas del Metal/química , Metanol/análisis , Tamaño de la Partícula , Hojas de la Planta/metabolismo , Reproducibilidad de los Resultados , Solubilidad , Titanio/química , Óxido de Zinc/química
2.
Nat Nanotechnol ; 15(9): 801-810, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32572231

RESUMEN

The globally recognized need to advance more sustainable agriculture and food systems has motivated the emergence of transdisciplinary solutions, which include methodologies that utilize the properties of materials at the nanoscale to address extensive and inefficient resource use. Despite the promising prospects of these nanoscale materials, the potential for large-scale applications directly to the environment and to crops necessitates precautionary measures to avoid unintended consequences. Further, the effects of using engineered nanomaterials (ENMs) in agricultural practices cascade throughout their life cycle and include effects from upstream-embodied resources and emissions from ENM production as well as their potential downstream environmental implications. Building on decades-long research in ENM synthesis, biological and environmental interactions, fate, transport and transformation, there is the opportunity to inform the sustainable design of nano-enabled agrochemicals. Here we perform a screening-level analysis that considers the system-wide benefits and costs for opportunities in which ENMs can advance the sustainability of crop-based agriculture. These include their on-farm use as (1) soil amendments to offset nitrogen fertilizer inputs, (2) seed coatings to increase germination rates and (3) foliar sprays to enhance yields. In each analysis, the nano-enabled alternatives are compared against the current practice on the basis of performance and embodied energy. In addition to identifying the ENM compositions and application approaches with the greatest potential to sustainably advance crop production, we present a holistic, prospective, systems-based approach that promotes emerging alternatives that have net performance and environmental benefits.


Asunto(s)
Producción de Cultivos/métodos , Exposición a Riesgos Ambientales , Nanoestructuras , Nanotecnología/métodos , Productos Agrícolas , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Granjas , Fertilizantes , Humanos , Nitrógeno , Hojas de la Planta , Semillas/química , Suelo , Desarrollo Sostenible
3.
Environ Sci Technol ; 54(14): 8699-8709, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32579348

RESUMEN

The application of nanoparticles (NPs) to soils, as either fertilizers or fungicides (e.g., CuO NPs), has been proposed to improve the sustainability of agriculture. The observed effects could result directly from the NP-plant interactions or indirectly through effects on the soil microbiome. The objective of this study was to assess the effects of CuO NPs on the changes in the bacterial community structure and nitrogen-cycling-associated functions in a high pH soil and to correlate these changes with nitrate accumulation, soil parameter changes, and plant growth over 28 days. Triticum aestivum seedlings were exposed to 50 mg/kg CuO NPs, 50 mg/kg CuSO4, or 0.5 mg/kg CuSO4 in a standard soil (Lufa 2.1 soil, pH adjusted to 7.6). While Cu treatments reduced nitrate accumulation in the bulk soil, the effects were opposite in the rhizosphere (the soil influenced by root exudates). While nitrate accumulation in bulk soil negatively correlated with total Cu concentration, part of the nitrate concentration in the rhizosphere was explained by root uptake during plant growth, the rest being modulated by Cu treatments. The abundance of genes involved in the nitrogen cycle in the rhizosphere soil correlated with the ionic copper concentration. The increased nitrate concentration in the rhizosphere correlated with an increase of the gene abundance related to the nitrogen fixation and a decrease of denitrification gene abundance. Microbial diversity in bulk or rhizosphere soil under the different treatments alone could not explain these variations, while differences in the assemblages of bacteria associated with these functional gene abundances gave good insights. This study highlights the complexity of microbial N-related function in the rhizosphere and the need to characterize the rhizosphere soil, plant growth and root activity, NP (bio)transformations, along with microbial networks, to understand the impact of agrochemicals (here CuO NPs) on soil fertility.


Asunto(s)
Nanopartículas , Suelo , Bacterias/genética , Cobre , Nitrógeno , Ciclo del Nitrógeno , Rizosfera , Microbiología del Suelo , Triticum
4.
Environ Sci Technol ; 54(3): 1533-1544, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31951397

RESUMEN

Reliable predictions of the environmental fate and risk of engineered nanomaterials (ENMs) require a better understanding of ENM reactivity in complex, biologically active systems for chronic low-concentration exposure scenarios. Here, simulated freshwater wetland mesocosms were dosed with ENMs to assess how their reactivity and seasonal changes in environmental parameters influence ENM fate in aquatic systems. Copper-based ENMs (Kocide), known to dissolve in water, and gold nanoparticles (AuNPs), stable against dissolution in the absence of specific ligands, were added weekly to mesocosm waters for 9 months. Metal accumulation and speciation changes in the different environmental compartments were assessed over time. Copper from Kocide rapidly dissolved likely associating with organic matter in the water column, transported to terrestrial soils and deeper sediment where it became associated with organic or sulfide phases. In contrast, Au accumulated on/in the macrophytes where it oxidized and transferred over time to surficial sediment. A dynamic seasonal accumulation and metal redox cycling were found between the macrophyte and the surficial sediment for AuNPs. These results demonstrate the need for experimental quantification of how the biological and chemical complexity of the environment, combined with their seasonal variations, drive the fate of metastable ENMs.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Cobre , Agua Dulce , Oro , Estaciones del Año , Humedales
5.
Environ Sci Technol ; 52(5): 2888-2897, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29385794

RESUMEN

It has been suggested, but not previously measured, that dissolution kinetics of soluble nanoparticles such as CuO nanoparticles (NPs) in soil affect their phytotoxicity. An added complexity is that such dissolution is also affected by the presence of plant roots. Here, we measured the rate of dissolution of CuO NPs in bulk soil, and in soil in which wheat plants ( Triticum aestivum) were grown under two soil NP dosing conditions: (a) freshly added CuO NPs (500 mg Cu/kg soil) and (b) CuO NPs aged for 28 d before planting. At the end of the plant growth period (14 d), available Cu was measured in three different soil compartments: bulk (not associated with roots), loosely attached to roots, and rhizosphere (soil firmly attached to roots). The labile Cu fraction increased from 17 mg/kg to 223 mg/kg in fresh treatments and from 283 mg/kg to 305 mg/kg in aged treatments over the growth period due to dissolution. Aging CuO NPs increased the toxicity to Triticum aestivum (reduction in root maximal length). The presence of roots in the soil had opposite and somewhat compensatory effects on NP dissolution, as measured in rhizosphere soil. pH increased 0.4 pH units for fresh NP treatments and 0.6 pH units for aged NPs. This lowered CuO NP dissolution in rhizosphere soil. Exudates from T. aestivum roots also increased soluble Cu in pore water. CaCl2 extractable Cu concentrations increaed in rhizosphere soil compared to bulk soil, from 1.8 mg/kg to 6.2 mg/kg in fresh treatment and from 3.4 mg/kg to 5.4 mg/kg in aged treatments. Our study correlated CuO NP dissolution and the resulting Cu ion exposure profile to phytotoxicity, and showed that plant-induced changes in rhizosphere conditions should be considered when measuring the dissolution of CuO NPs near roots.


Asunto(s)
Nanopartículas , Rizosfera , Cobre , Raíces de Plantas , Suelo , Solubilidad , Triticum
6.
Environ Eng Sci ; 32(8): 647-655, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26339183

RESUMEN

Addition of nanoscale zero valent iron (NZVI) to anaerobic batch reactors to enhance methanogenic activity is described. Two NZVI systems were tested: a commercially available NZVI (cNZVI) slurry and a freshly synthesized NZVI (sNZVI) suspension that was prepared immediately before addition to the reactors. In both systems, the addition of NZVI increased pH and decreased oxidation/reduction potential compared with unamended control reactors. Biodegradation of a model brewery wastewater was enhanced as indicated by an increase in chemical oxygen demand removal with both sNZVI and cNZVI amendments at all concentrations tested (1.25-5.0 g Fe/L). Methane production increased for all NZVI-amended bioreactors, with a maximum increase of 28% achieved on the addition of 2.5 and 5.0 g/L cNZVI. Addition of bulk zero-valent iron resulted in only a 5% increase in methane, indicating the advantage of using the nanoscale particles. NZVI amendments further improved produced biogas by decreasing the amount of CO2 released from the bioreactor by approximately 58%. Overall, addition of cNZVI proved more beneficial than the sNZVI at equal iron concentrations, due to decreased colloidal stability and larger effective particle size of sNZVI. Although some have reported cytotoxicity of NZVI to anaerobic microorganisms, work presented here suggests that NZVI of a certain particle size and reactivity can serve as an amendment to anaerobic digesters to enhance degradation and increase the value of the produced biogas, yielding a more energy-efficient anaerobic method for wastewater treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...