Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38853898

RESUMEN

Processivity clamps mediate polymerase switching for translesion synthesis (TLS). All three E. coli TLS polymerases interact with the ß2 processivity clamp through a conserved clamp-binding motif (CBM), which is indispensable for TLS. Notably, Pol IV also makes a unique secondary contact with the clamp through non-CBM residues. However, the role of this "rim contact" in Pol IV-mediated TLS remains poorly understood. Here we show that the rim contact is critical for TLS past strong replication blocks. In in vitro reconstituted Pol IV-mediated TLS, ablating the rim contact compromises TLS past 3-methyl dA, a strong block, while barely affecting TLS past N2-furfuryl dG, a weak block. Similar observations are also made in E. coli cells bearing a single copy of these lesions in the genome. Within lesion-stalled replication forks, the rim interaction and ssDNA binding protein cooperatively poise Pol IV to better compete with Pol III for binding to a cleft through its CBM. We propose that this bipartite clamp interaction enables Pol IV to rapidly resolve lesion-stalled replication through TLS at the fork, which reduces damage induced mutagenesis.

2.
NAR Genom Bioinform ; 6(2): lqae069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38915823

RESUMEN

Microbial specialized metabolite biosynthetic gene clusters (SMBGCs) are a formidable source of natural products of pharmaceutical interest. With the multiplication of genomic data available, very efficient bioinformatic tools for automatic SMBGC detection have been developed. Nevertheless, most of these tools identify SMBGCs based on sequence similarity with enzymes typically involved in specialised metabolism and thus may miss SMBGCs coding for undercharacterised enzymes. Here we present Synteruptor (https://bioi2.i2bc.paris-saclay.fr/synteruptor), a program that identifies genomic islands, known to be enriched in SMBGCs, in the genomes of closely related species. With this tool, we identified a SMBGC in the genome of Streptomyces ambofaciens ATCC23877, undetected by antiSMASH versions prior to antiSMASH 5, and experimentally demonstrated that it directs the biosynthesis of two metabolites, one of which was identified as sphydrofuran. Synteruptor is also a valuable resource for the delineation of individual SMBGCs within antiSMASH regions that may encompass multiple clusters, and for refining the boundaries of these SMBGCs.

3.
Nat Struct Mol Biol ; 29(9): 932-941, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36127468

RESUMEN

Processivity clamps tether DNA polymerases to DNA, allowing their access to the primer-template junction. In addition to DNA replication, DNA polymerases also participate in various genome maintenance activities, including translesion synthesis (TLS). However, owing to the error-prone nature of TLS polymerases, their association with clamps must be tightly regulated. Here we show that fork-associated ssDNA-binding protein (SSB) selectively enriches the bacterial TLS polymerase Pol IV at stalled replication forks. This enrichment enables Pol IV to associate with the processivity clamp and is required for TLS on both the leading and lagging strands. In contrast, clamp-interacting proteins (CLIPs) lacking SSB binding are spatially segregated from the replication fork, minimally interfering with Pol IV-mediated TLS. We propose that stalling-dependent structural changes within clusters of fork-associated SSB establish hierarchical access to the processivity clamp. This mechanism prioritizes a subset of CLIPs with SSB-binding activity and facilitates their exchange at the replication fork.


Asunto(s)
Proteínas de Unión al ADN , Escherichia coli , ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
4.
PLoS Genet ; 18(6): e1010238, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653392

RESUMEN

During replication, the presence of unrepaired lesions results in the formation of single stranded DNA (ssDNA) gaps that need to be repaired to preserve genome integrity and cell survival. All organisms have evolved two major lesion tolerance pathways to continue replication: Translesion Synthesis (TLS), potentially mutagenic, and Homology Directed Gap Repair (HDGR), that relies on homologous recombination. In Escherichia coli, the RecF pathway repairs such ssDNA gaps by processing them to produce a recombinogenic RecA nucleofilament during the presynaptic phase. In this study, we show that the presynaptic phase is crucial for modulating lesion tolerance pathways since the competition between TLS and HDGR occurs at this stage. Impairing either the extension of the ssDNA gap (mediated by the nuclease RecJ and the helicase RecQ) or the loading of RecA (mediated by RecFOR) leads to a decrease in HDGR and a concomitant increase in TLS. Hence, we conclude that defects in the presynaptic phase delay the formation of the D-loop and increase the time window allowed for TLS. In contrast, we show that a defect in the postsynaptic phase that impairs HDGR does not lead to an increase in TLS. Unexpectedly, we also reveal a strong genetic interaction between recF and recJ genes, that results in a recA deficient-like phenotype in which HDGR is almost completely abolished.


Asunto(s)
Proteínas de Escherichia coli , Reparación del ADN/genética , Replicación del ADN/genética , ADN Bacteriano/genética , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo
5.
Nucleic Acids Res ; 50(4): 2074-2080, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35104879

RESUMEN

The DNA damage response (DDR) preserves the genetic integrity of the cell by sensing and repairing damages after a genotoxic stress. Translesion Synthesis (TLS), an error-prone DNA damage tolerance pathway, is controlled by PCNA ubiquitination. In this work, we raise the question whether TLS is controlled locally or globally. Using a recently developed method that allows to follow the bypass of a single lesion inserted into the yeast genome, we show that (i) TLS is controlled locally at each individual lesion by PCNA ubiquitination, (ii) a single lesion is enough to induce PCNA ubiquitination and (iii) PCNA ubiquitination is imperative for TLS to occur. More importantly, we show that the activation of the DDR that follows a genotoxic stress does not increase TLS at individual lesions. We conclude that unlike the SOS response in bacteria, the eukaryotic DDR does not promote TLS and mutagenesis.


Asunto(s)
Reparación del ADN , Replicación del ADN , Daño del ADN , Reparación del ADN/genética , Replicación del ADN/genética , Mutagénesis , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitinación
6.
Nucleic Acids Res ; 50(5): 2667-2680, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35166826

RESUMEN

The tumour suppressor SLX4 plays multiple roles in the maintenance of genome stability, acting as a scaffold for structure-specific endonucleases and other DNA repair proteins. It directly interacts with the mismatch repair (MMR) protein MSH2 but the significance of this interaction remained unknown until recent findings showing that MutSß (MSH2-MSH3) stimulates in vitro the SLX4-dependent Holliday junction resolvase activity. Here, we characterize the mode of interaction between SLX4 and MSH2, which relies on an MSH2-interacting peptide (SHIP box) that drives interaction of SLX4 with both MutSß and MutSα (MSH2-MSH6). While we show that this MSH2 binding domain is dispensable for the well-established role of SLX4 in interstrand crosslink repair, we find that it mediates inhibition of MutSα-dependent MMR by SLX4, unravelling an unanticipated function of SLX4.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN , Endonucleasas , Proteína 2 Homóloga a MutS , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Proteína 2 Homóloga a MutS/metabolismo
7.
Nucleic Acids Res ; 47(20): e124, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31418026

RESUMEN

In order to explore the mechanisms employed by living cells to deal with DNA alterations, we have developed a method by which we insert a modified DNA into a specific site of the yeast genome. This is achieved by the site-specific integration of a modified plasmid at a chosen locus of the genome of Saccharomyces cerevisiae, through the use of the Cre/lox recombination system. In the present work, we have used our method to insert a single UV lesion into the yeast genome, and studied how the balance between error-free and error-prone lesion bypass is regulated. We show that the inhibition of homologous recombination, either directly (by the inactivation of Rad51 recombinase) or through its control by preventing the polyubiquitination of PCNA (ubc13 mutant), leads to a strong increase in the use of Trans Lesion Synthesis (TLS). Such regulatory aspects of DNA damage tolerance could not have been observed with previous strategies using plasmid or randomly distributed DNA lesions, which shows the advantage of our new method. The very robust and precise integration of any modified DNA at any chosen locus of the yeast genome that we describe here is a powerful tool that will enable the exploration of many biological processes related to replication and repair of modified DNA.


Asunto(s)
Marcación de Gen/métodos , Recombinación Homóloga , Saccharomyces cerevisiae/genética , Daño del ADN , Genoma Fúngico , Integrasas/genética , Integrasas/metabolismo , Plásmidos/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Rayos Ultravioleta
9.
Nucleic Acids Res ; 46(8): 4004-4012, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29529312

RESUMEN

The genome of all organisms is constantly threatened by numerous agents that cause DNA damage. When the replication fork encounters an unrepaired DNA lesion, two DNA damage tolerance pathways are possible: error-prone translesion synthesis (TLS) that requires specialized DNA polymerases, and error-free damage avoidance that relies on homologous recombination (HR). The balance between these two mechanisms is essential since it defines the level of mutagenesis during lesion bypass, allowing genetic variability and adaptation to the environment, but also introduces the risk of generating genome instability. Here we report that the mere proximity of replication-blocking lesions that arise in Escherichia coli's genome during a genotoxic stress leads to a strong increase in the use of the error-prone TLS. We show that this increase is caused by the local inhibition of HR due to the overlapping of single-stranded DNA regions generated downstream of the lesions. This increase in TLS is independent of SOS activation, but its mutagenic effect is additive with the one of SOS. Hence, the combination of SOS induction and lesions proximity leads to a strong increase in TLS that becomes the main lesion tolerance pathway used by the cell during a genotoxic stress.


Asunto(s)
Daño del ADN , Reparación del ADN , Escherichia coli/genética , ADN/biosíntesis , ADN de Cadena Simple/biosíntesis , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasas/metabolismo , Reparación del ADN por Recombinación , Respuesta SOS en Genética
10.
Nucleic Acids Res ; 45(10): 5877-5886, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28369478

RESUMEN

The RecBCD complex is a key factor in DNA metabolism. This protein complex harbors a processive nuclease and two helicases activities that give it the ability to process duplex DNA ends. These enzymatic activities make RecBCD a major player in double strand break repair, conjugational recombination and degradation of linear DNA. In this work, we unravel a new role of the RecBCD complex in the processing of DNA single-strand gaps that are generated at DNA replication-blocking lesions. We show that independently of its nuclease or helicase activities, the entire RecBCD complex is required for recombinational repair of the gap and efficient translesion synthesis. Since none of the catalytic functions of RecBCD are required for those processes, we surmise that the complex acts as a structural element that stabilizes the blocked replication fork, allowing efficient DNA damage tolerance.


Asunto(s)
Replicación del ADN , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Exodesoxirribonucleasa V/genética , Reparación del ADN por Recombinación , Roturas del ADN de Doble Cadena , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasa V/metabolismo , Eliminación de Gen , Dominios Proteicos
11.
PLoS Genet ; 11(12): e1005757, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26713761

RESUMEN

DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured.


Asunto(s)
División Celular , Roturas del ADN de Cadena Simple , Escherichia coli/genética , Reparación del ADN por Recombinación , Daño del ADN , Escherichia coli/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo
12.
PLoS One ; 9(1): e87607, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498152

RESUMEN

The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones.


Asunto(s)
Proteínas Bacterianas , Genes Bacterianos , Péptido Sintasas , Sintasas Poliquetidas , Streptomyces , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Antimicina A/análogos & derivados , Antimicina A/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Netropsina/metabolismo , Oligopéptidos/biosíntesis , Oligopéptidos/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Streptomyces/enzimología , Streptomyces/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
13.
J Antibiot (Tokyo) ; 67(1): 71-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24220109

RESUMEN

Many polyketide antibiotics contain macrolactones that arise from polyketide synthase chain release via thioesterase (TE) domain-catalyzed macrolactonization. The hydroxyl groups utilized in such macrolactonization reactions typically derive from reduction of ß-ketothioester intermediates in polyketide chain assembly. The stambomycins are a group of novel macrolide antibiotics with promising anticancer activity that we recently discovered via rational activation of a silent polyketide biosynthetic gene cluster in Streptomyces ambofaciens. Here we report that the hydroxyl group utilized for formation of the macrolactone in the stambomycins is derived from cytochrome P450-catalyzed hydroxylation of the polyketide chain rather than keto reduction during chain assembly. This is a novel mechanism for macrolactone formation in polyketide antibiotic biosynthesis.


Asunto(s)
Antibióticos Antineoplásicos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Macrólidos/química , Policétidos/química , Antibióticos Antineoplásicos/biosíntesis , Hidroxilación
14.
DNA Repair (Amst) ; 12(4): 300-5, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23433812

RESUMEN

ATP is the most important energy source for the maintenance and growth of living cells. Here we report that the impairment of the aerobic respiratory chain by inactivation of the ndh gene, or the inhibition of glycolysis with arsenate, both of which reduce intracellular ATP, result in a significant decrease in spontaneous mutagenesis in Escherichia coli. The genetic analyses and mutation spectra in the ndh strain revealed that the decrease in spontaneous mutagenesis resulted from an enhanced accuracy of the replicative DNA polymerase. Quantification of the dNTP content in the ndh mutant cells and in the arsenate-treated cells showed reduction of the dNTP pool, which could explain the observed broad antimutator effects. In conclusion, our work indicates that the cellular energy supply could affect spontaneous mutation rates and that a reduction of the dNTP levels can be antimutagenic.


Asunto(s)
Replicación del ADN/genética , Desoxirribonucleótidos/metabolismo , Escherichia coli/genética , Arseniatos/toxicidad , Replicación del ADN/efectos de los fármacos , Escherichia coli/metabolismo , Glucólisis/efectos de los fármacos , Mutagénesis , Tasa de Mutación , NADH Deshidrogenasa/genética
15.
Antibiotics (Basel) ; 2(1): 100-14, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-27029295

RESUMEN

Nowadays, the emergence and spread of antibiotic resistance have become an utmost medical and economical problem. It has also become evident that subinhibitory concentrations of antibiotics, which pollute all kind of terrestrial and aquatic environments, have a non-negligible effect on the evolution of antibiotic resistance in bacterial populations. Subinhibitory concentrations of antibiotics have a strong effect on mutation rates, horizontal gene transfer and biofilm formation, which may all contribute to the emergence and spread of antibiotic resistance. Therefore, the molecular mechanisms and the evolutionary pressures shaping the bacterial responses to subinhibitory concentrations of antibiotics merit to be extensively studied. Such knowledge is valuable for the development of strategies to increase the efficacy of antibiotic treatments and to extend the lifetime of antibiotics used in therapy by slowing down the emergence of antibiotic resistance.

16.
Proc Natl Acad Sci U S A ; 108(15): 6258-63, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21444795

RESUMEN

There is a constant need for new and improved drugs to combat infectious diseases, cancer, and other major life-threatening conditions. The recent development of genomics-guided approaches for novel natural product discovery has stimulated renewed interest in the search for natural product-based drugs. Genome sequence analysis of Streptomyces ambofaciens ATCC23877 has revealed numerous secondary metabolite biosynthetic gene clusters, including a giant type I modular polyketide synthase (PKS) gene cluster, which is composed of 25 genes (nine of which encode PKSs) and spans almost 150 kb, making it one of the largest polyketide biosynthetic gene clusters described to date. The metabolic product(s) of this gene cluster are unknown, and transcriptional analyses showed that it is not expressed under laboratory growth conditions. The constitutive expression of a regulatory gene within the cluster, encoding a protein that is similar to Large ATP binding of the LuxR (LAL) family proteins, triggered the expression of the biosynthetic genes. This led to the identification of four 51-membered glycosylated macrolides, named stambomycins A-D as metabolic products of the gene cluster. The structures of these compounds imply several interesting biosynthetic features, including incorporation of unusual extender units into the polyketide chain and in trans hydroxylation of the growing polyketide chain to provide the hydroxyl group for macrolide formation. Interestingly, the stambomycins possess promising antiproliferative activity against human cancer cell lines. Database searches identify genes encoding LAL regulators within numerous cryptic biosynthetic gene clusters in actinomycete genomes, suggesting that constitutive expression of such pathway-specific activators represents a powerful approach for novel bioactive natural product discovery.


Asunto(s)
Macrólidos/química , Macrólidos/farmacología , Sintasas Poliquetidas/genética , Streptomyces/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Silenciador del Gen , Humanos , Macrólidos/metabolismo , Familia de Multigenes , Streptomyces/enzimología , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...