Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Am J Epidemiol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108174

RESUMEN

A major update to the International Nuclear Workers Study was undertaken that allows us to report updated estimates of associations between radiation and site-specific solid cancer mortality. A cohort of 309,932 nuclear workers employed in France, the United Kingdom, and United States were monitored for external radiation exposure and associations with cancer mortality were quantified as the excess relative rate (ERR) per gray (Gy) using a maximum likelihood and a Markov chain Monte Carlo method (to stabilize estimates via a hierarchical regression). The analysis included 28,089 deaths due to solid cancer, the most common being lung, prostate, and colon cancer. Using maximum likelihood, positive estimates of ERR per Gy were obtained for stomach, colon, rectum, pancreas, peritoneum, larynx, lung, pleura/mesothelioma, bone and connective tissue, skin, prostate, testis, bladder, kidney, thyroid, and residual cancers; negative estimates of ERR per Gy were found cancers of oral cavity and pharynx, esophagus, and ovary. A hierarchical model stabilized site-specific estimates of association, including for lung (ERR per Gy=0.65; 95% credible interval [CrI]: 0.24, 1.07), prostate (ERR per Gy=0.44; 95% CrI: -0.06, 0.91), and colon cancer (ERR per Gy=0.53; 95% CrI: -0.07, 1.11). The results contribute evidence regarding associations between low dose radiation and cancer.

2.
Radiat Res ; 202(2): 432-487, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39021204

RESUMEN

In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.


Asunto(s)
Neoplasias Inducidas por Radiación , Exposición a la Radiación , Radiación Ionizante , Humanos , Exposición a la Radiación/efectos adversos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Historia del Siglo XX , Estudios Epidemiológicos , Historia del Siglo XXI , Exposición Profesional
3.
Int J Radiat Biol ; 100(7): 982-995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718325

RESUMEN

PURPOSE: The Organisation for Economic Co-operation and Development (OECD) Adverse Outcome Pathway (AOP) Development Programme is being explored in the radiation field, as an overarching framework to identify and prioritize research needs that best support strengthening of radiation risk assessment and risk management strategies. To advance the use of AOPs, an international horizon-style exercise (HSE) was initiated through the Radiation/Chemical AOP Joint Topical Group (JTG) formed by the OECD Nuclear Energy Agency (NEA) High-Level Group on Low Dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The intent of the HSE was to identify key research questions for consideration in AOP development that would help to reduce uncertainties in estimating the health risks following exposures to low dose and low dose-rate ionizing radiation. The HSE was conducted in several phases involving the solicitation of relevant questions, a collaborative review of open-ended candidate questions and an elimination exercise that led to the selection of 25 highest priority questions for the stated purpose. These questions were further ranked by over 100 respondents through an international survey. This final set of questions was judged to provide insights into how the OECD's AOP approach can be put into practice to meet the needs of hazard and risk assessors, regulators, and researchers. This paper examines the 25 priority questions in the context of hazard/risk assessment framework for ionizing radiation. CONCLUSION: By addressing the 25 priority questions, it is anticipated that constructed AOPs will have a high level of specificity, making them valuable tools for simplifying and prioritizing complex biological processes for use in developing revised radiation hazard and risk assessment strategies.


Asunto(s)
Rutas de Resultados Adversos , Humanos , Medición de Riesgo , Protección Radiológica/métodos , Internacionalidad , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/etiología
4.
Int J Radiat Biol ; : 1-11, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38284800

RESUMEN

PURPOSE: Task Group 121 - Effects of ionizing radiation exposure in offspring and next generations - is a task group under the Committee 1 of the International Commission on Radiological Protection (ICRP), approved by the Main Commission on 18th November 2021. The main goals of Task Group 121 are to (1) review and update the scientific literature of relevance to radiation-related effects in the offspring of parent(s) exposed to ionizing radiation in both human and non-human biota; (2) to assess preconceptional and intrauterine effects of radiation exposure and related morbidity and mortality; and, (3) to provide advice about the level of evidence and how to consider these preconceptional and postconceptional effects in the system of radiological protection for humans and non-human biota. METHODS: The Task Group is reviewing relevant literature since Publication 90 'Biological effects after prenatal irradiation (embryo and fetus)' (2003) and will include radiation-related effects on future generations in humans, animals, and plants. This review will be conducted to account for the health effects on offspring and subsequent generations in the current system of radiological protection. Radiation detriment calculation will also be reviewed. Finally, preliminary recommendations will be made to update the integration of health effects in offspring and next generations in the system of radiological protection. RESULTS: A Workshop, jointly organized by ICRP Task Group 121 and European Radiation Protection Research Platforms MELODI and ALLIANCE was held in Budapest, Hungary, from 31st May to 2nd June 2022. Participants discussed four important topics: (1) hereditary and epigenetic effects due to exposure of the germ cell line (preconceptional exposure), (2) effects arising from exposure of the embryo and fetus (intrauterine exposure), (3) transgenerational effects on biota, and (4) its potential impact on the system of radiological protection. CONCLUSIONS: Based on the discussions and presentations during the breakout sessions, newer publications, and gaps on the current scientific literature were identified. For instance, there are some ongoing systematic reviews and radiation epidemiology reviews of intrauterine effects. There are newer methods of Monte Carlo simulation for fetal dosimetry, and advances in radiation genetics, epigenetics, and radiobiology studies. While the current impact of hereditary effects on the global detriment was reported as small, the questions surrounding the effects of radiation exposure on offspring and the next generation are crucial, recurring, and with a major focus on exposed populations. This article summarizes the workshop discussions, presentations, and conclusions of each topic and introduces the special issue of the International Journal of Radiation Biology resulting from the discussions of the meeting.

5.
J Radiol Prot ; 43(4)2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38035396

RESUMEN

An anonymous web-based survey was developed to check different aspects (SHAMISEN SINGS project): stakeholder awareness and perceptions of available mobile applications (apps) for measuring ionising radiation doses and health/well-being indicators; whether they would be ready to use them in the post-accidental recovery; and what are their preferred methodologies to acquire information etc. The results show that participation of the citizens would be most beneficial during post-accident recovery, providing individual measurements of external ionizing dose and health/well-being parameters, with possible follow-up. Also, participants indicated different preferences for sources to gain knowledge on ionising radiation and for the functions that an ideal app should have. The level of awareness and readiness to use apps to measure ionising radiation dose depended on two main aspects: individual differences (age & gender) and whether people were from countries affected by the previous major accidents. We concluded that stakeholders could have benefits from the data management plan: (1) it potentiates resilience at individual and community level; (2) citizens' measurements contribute to environmental monitoring and public health screening; (3) linkages between different types of data (environmental exposure, individual behavioural diaries, and measurements of health indicators) allow to perform more rigorous epidemiological studies.


Asunto(s)
Teléfono Celular , Aplicaciones Móviles , Liberación de Radiactividad Peligrosa , Resiliencia Psicológica , Humanos , Exposición a Riesgos Ambientales
6.
BMJ ; 382: e074520, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37586731

RESUMEN

OBJECTIVE: To evaluate the effect of protracted low dose, low dose rate exposure to ionising radiation on the risk of cancer. DESIGN: Multinational cohort study. SETTING: Cohorts of workers in the nuclear industry in France, the UK, and the US included in a major update to the International Nuclear Workers Study (INWORKS). PARTICIPANTS: 309 932 workers with individual monitoring data for external exposure to ionising radiation and a total follow-up of 10.7 million person years. MAIN OUTCOME MEASURES: Estimates of excess relative rate per gray (Gy) of radiation dose for mortality from cancer. RESULTS: The study included 103 553 deaths, of which 28 089 were due to solid cancers. The estimated rate of mortality due to solid cancer increased with cumulative dose by 52% (90% confidence interval 27% to 77%) per Gy, lagged by 10 years. Restricting the analysis to the low cumulative dose range (0-100 mGy) approximately doubled the estimate of association (and increased the width of its confidence interval), as did restricting the analysis to workers hired in the more recent years of operations when estimates of occupational external penetrating radiation dose were recorded more accurately. Exclusion of deaths from lung cancer and pleural cancer had a modest effect on the estimated magnitude of association, providing indirect evidence that the association was not substantially confounded by smoking or occupational exposure to asbestos. CONCLUSIONS: This major update to INWORKS provides a direct estimate of the association between protracted low dose exposure to ionising radiation and solid cancer mortality based on some of the world's most informative cohorts of radiation workers. The summary estimate of excess relative rate solid cancer mortality per Gy is larger than estimates currently informing radiation protection, and some evidence suggests a steeper slope for the dose-response association in the low dose range than over the full dose range. These results can help to strengthen radiation protection, especially for low dose exposures that are of primary interest in contemporary medical, occupational, and environmental settings.


Asunto(s)
Neoplasias Inducidas por Radiación , Enfermedades Profesionales , Exposición Profesional , Exposición a la Radiación , Humanos , Estados Unidos , Estudios de Cohortes , Dosis de Radiación , Radiación Ionizante , Industrias , Reino Unido/epidemiología , Exposición Profesional/efectos adversos , Exposición a la Radiación/efectos adversos
7.
J Radiol Prot ; 43(2)2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37339605

RESUMEN

The linear no-threshold (LNT) model was introduced into the radiological protection system about 60 years ago, but this model and its use in radiation protection are still debated today. This article presents an overview of results on effects of exposure to low linear-energy-transfer radiation in radiobiology and epidemiology accumulated over the last decade and discusses their impact on the use of the LNT model in the assessment of radiation-related cancer risks at low doses. The knowledge acquired over the past 10 years, both in radiobiology and epidemiology, has reinforced scientific knowledge about cancer risks at low doses. In radiobiology, although certain mechanisms do not support linearity, the early stages of carcinogenesis comprised of mutational events, which are assumed to play a key role in carcinogenesis, show linear responses to doses from as low as 10 mGy. The impact of non-mutational mechanisms on the risk of radiation-related cancer at low doses is currently difficult to assess. In epidemiology, the results show excess cancer risks at dose levels of 100 mGy or less. While some recent results indicate non-linear dose relationships for some cancers, overall, the LNT model does not substantially overestimate the risks at low doses. Recent results, in radiobiology or in epidemiology, suggest that a dose threshold, if any, could not be greater than a few tens of mGy. The scientific knowledge currently available does not contradict the use of the LNT model for the assessment of radiation-related cancer risks within the radiological protection system, and no other dose-risk relationship seems more appropriate for radiological protection purposes.


Asunto(s)
Neoplasias Inducidas por Radiación , Protección Radiológica , Humanos , Neoplasias Inducidas por Radiación/prevención & control , Neoplasias Inducidas por Radiación/epidemiología , Modelos Lineales , Radiobiología , Carcinogénesis , Relación Dosis-Respuesta en la Radiación , Medición de Riesgo/métodos
8.
Occup Environ Med ; 80(7): 385-391, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37164624

RESUMEN

OBJECTIVES: Radon is a ubiquitous occupational and environmental lung carcinogen. We aim to quantify the association between radon progeny and lung cancer mortality in the largest and most up-to-date pooled study of uranium miners. METHODS: The pooled uranium miners analysis combines 7 cohorts of male uranium miners with 7754 lung cancer deaths and 4.3 million person-years of follow-up. Vital status and lung cancer deaths were ascertained between 1946 and 2014. The association between cumulative radon exposure in working level months (WLM) and lung cancer was modelled as the excess relative rate (ERR) per 100 WLM using Poisson regression; variation in the association by temporal and exposure factors was examined. We also examined analyses restricted to miners first hired before 1960 and with <100 WLM cumulative exposure. RESULTS: In a model that allows for variation by attained age, time since exposure and annual exposure rate, the ERR/100 WLM was 4.68 (95% CI 2.88 to 6.96) among miners who were less than 55 years of age and were exposed in the prior 5 to <15 years at annual exposure rates of <0.5 WL. This association decreased with older attained age, longer time since exposure and higher annual exposure rate. In analyses restricted to men first hired before 1960, we observed similar patterns of association but a slightly lower estimate of the ERR/100 WLM. CONCLUSIONS: This new large, pooled study confirms and supports a linear exposure-response relationship between cumulative radon exposure and lung cancer mortality which is jointly modified by temporal and exposure factors.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Inducidas por Radiación , Enfermedades Profesionales , Exposición Profesional , Radón , Uranio , Humanos , Masculino , Persona de Mediana Edad , Radón/efectos adversos , Uranio/efectos adversos , Estudios de Cohortes , Exposición Profesional/efectos adversos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Proteínas Reguladoras de la Apoptosis , Neoplasias Pulmonares/etiología , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/etiología
9.
Environ Health ; 22(1): 17, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36803161

RESUMEN

BACKGROUND: The SHAMISEN (Nuclear Emergency Situations - Improvement of Medical And Health Surveillance) European project was conducted in 2015-2017 to review the lessons learned from the experience of past nuclear accidents and develop recommendations for preparedness and health surveillance of populations affected by a nuclear accident. Using a toolkit approach, Tsuda et al. recently published a critical review of the article by Cléro et al. derived from the SHAMISEN project on thyroid cancer screening after nuclear accident. MAIN BODY: We address the main points of criticism of our publication on the SHAMISEN European project. CONCLUSION: We disagree with some of the arguments and criticisms mentioned by Tsuda et al. We continue to support the conclusions and recommendations of the SHAMISEN consortium, including the recommendation not to launch a mass thyroid cancer screening after a nuclear accident, but rather to make it available (with appropriate information counselling) to those who request it.


Asunto(s)
Accidente Nuclear de Fukushima , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/epidemiología , Política de Salud , Métodos Epidemiológicos
10.
Radiat Environ Biophys ; 61(4): 507-543, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36241855

RESUMEN

Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.


Asunto(s)
Exposición a la Radiación , Traumatismos por Radiación , Protección Radiológica , Animales , Humanos , Dosis de Radiación , Radiación Ionizante , Radiobiología
11.
Int J Radiat Biol ; 98(12): 1763-1776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36067511

RESUMEN

PURPOSE: The Adverse Outcome Pathway (AOP) framework, a systematic tool that can link available mechanistic data with phenotypic outcomes of relevance to regulatory decision-making, is being explored in areas related to radiation risk assessment. To examine the challenges including the use of AOPs to support the radiation protection community, an international horizon-style exercise was initiated through the Organisation for Economic Co-operation and Development Nuclear Energy Agency High-Level Group on Low Dose Research Radiation/Chemical AOP Joint Topical Group. The objective of the HSE was to facilitate the collection of ideas from a range of experts, to short-list a set of priority research questions that could, if answered, improve the description of the radiation dose-response relationship for low dose/dose-rate exposures, as well as reduce uncertainties in estimating the risk of developing adverse health outcomes following such exposures. MATERIALS AND METHODS: The HSE was guided by an international steering committee of radiation risk experts. In the first phase, research questions were solicited on areas that can be supported by the AOP framework, or challenges on the use of AOPs in radiation risk assessment. In the second phase, questions received were refined and sorted by the SC using a best-worst scaling method. During a virtual 3-day workshop, the list of questions was further narrowed. In the third phase, an international survey of the broader radiation protection community led to an orderly ranking of the top questions. RESULTS: Of the 271 questions solicited, 254 were accepted and categorized into 9 themes. These were further refined to the top 25 prioritized questions. Among these, the higher ranked questions will be considered as 'important' to drive future initiatives in the low dose radiation protection community. These included questions on the ability of AOPs to delineate responses across different levels of biological organization, and how AOPs could be applied to address research questions on radiation quality, doses or dose-rates, exposure time patterns and deliveries, and uncertainties in low dose/dose-rate effects. A better understanding of these concepts is required to support the use of the AOP framework in radiation risk assessment. CONCLUSION: Through dissemination of these results and considerations on next steps, the JTG will address select priority questions to advance the development and use of AOPs in the radiation protection community. The major themes observed will be discussed in the context of their relevance to areas of research that support the system of radiation protection.


Asunto(s)
Rutas de Resultados Adversos , Protección Radiológica , Medición de Riesgo/métodos , Proyectos de Investigación , Encuestas y Cuestionarios
12.
Int J Radiat Biol ; 98(12): 1704-1713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938955

RESUMEN

BACKGROUND: The Organisation for Economic Co-operation and Development (OECD), through its Chemical Safety Programme, is delegated to ensure the safety of humans and wildlife from harmful toxicants. To support these needs, initiatives to increase the efficiency of hazard identification and risk management are under way. Amongst these, the adverse outcome pathway (AOP) approach integrates information on biological knowledge and test methodologies (both established and new) to support regulatory decision making. AOPs collate biological knowledge from different sources, assess lines of evidence through considerations of causality, and undergo rigorous peer-review before being subsequently endorsed by the OECD. It is envisioned that the OECD AOP Development Programme will transform the toxicity testing paradigm by leveraging the strengths of mechanistic and modeling based approaches and enhance the utility of high throughput screening assays. Since its launch, in 2012, the AOP Development Programme has matured with a greater number of AOPs endorsed, and the attraction of new scientific disciplines (e.g. the radiation field). Recently, a radiation and chemical (Rad/Chem) AOP Joint Topical Group has been formed by the OECD Nuclear Energy Agency High-level Group on Low-dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The topical group will work to evolve the development and use of the AOP framework in radiation research and regulation. As part of these efforts, the group will bring awareness and understanding on the program, as it has matured from the chemical perspective. In this context, this paper provides the radiation community with a high-level overview of the OECD AOP Development Programme, including examples of application using knowledge gleaned from the field of chemical toxicology, and their work toward regulatory implementation. CONCLUSION: Although the drivers for developing AOPs in chemical sector differ from that of the radiation field, the principles and transparency of the approach can benefit both scientific disciplines. By providing perspectives and an understanding of the evolution of the OECD AOP Development Programme including case examples and work toward quantitative AOP development, it may motivate the expansion and implementation of AOPs in the radiation field.


Asunto(s)
Rutas de Resultados Adversos , Protección Radiológica , Humanos , Organización para la Cooperación y el Desarrollo Económico , Pruebas de Toxicidad , Medición de Riesgo/métodos
14.
Int J Radiat Biol ; 98(12): 1714-1721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35666945

RESUMEN

BACKGROUND: Studies on human health and ecological effects of ionizing radiation are rapidly evolving as innovative technologies arise and the body of scientific knowledge grows. Structuring this information could effectively support the development of decision making tools and health risk models to complement current system of radiation protection. To this end, the adverse outcome pathway (AOP) approach is being explored as a means to consolidate the most relevant research to identify causation between exposure to a chemical or non-chemical stressor and disease or adverse effect progression. This tool is particularly important for low dose and low dose rate radiation exposures because of the latency and uncertainties in the biological responses at these exposure levels. To progress this aspect, it is essential to build a community of developers, facilitators, risk assessors (in the private sector and in government), policy-makers, and regulators who understand the strengths and weaknesses of, and how to appropriately utilize AOPs for consolidating our knowledge on the impact of low dose ionizing radiation. Through co-ordination with the Organisation of Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) High-Level Group on Low-Dose Research (HLG-LDR) and OECD's AOP Programme, initiatives are under way to demonstrate this approach in radiation research and regulation. Among these, a robust communications strategy and stakeholder engagement will be essential. It will help establish best practices for AOPs in institutional project development and aid in dissemination for more efficient and timely uptake and use of AOPs. In this regard, on June 1, 2021, the Radiation and Chemical (Rad/Chem) AOP Joint Topical Group was formed as part of the initiative from the NEA's HLG-LDR. The topical group will work to develop a communication and engagement strategy to define the target audiences, establish the clear messages and identify the delivery and engagement platforms. CONCLUSION: The incorporation of the best science and better decision making should motive the radiation protection community to develop, refine and use AOPs, recognizing that their incorporation into radiation health risk assessments is critical for public health and environmental protection in the 21st century.


Asunto(s)
Rutas de Resultados Adversos , Protección Radiológica , Humanos , Medición de Riesgo/métodos , Comunicación
15.
Environ Health Perspect ; 130(5): 57010, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35604341

RESUMEN

BACKGROUND: Despite reductions in exposure for workers and the general public, radon remains a leading cause of lung cancer. Prior studies of underground miners depended heavily upon information on deaths among miners employed in the early years of mine operations when exposures were high and tended to be poorly estimated. OBJECTIVES: To strengthen the basis for radiation protection, we report on the follow-up of workers employed in the later periods of mine operations for whom we have more accurate exposure information and for whom exposures tended to be accrued at intensities that are more comparable to contemporary settings. METHODS: We conducted a pooled analysis of cohort studies of lung cancer mortality among 57,873 male uranium miners in Canada, Czech Republic, France, Germany, and the United States, who were first employed in 1960 or later (thereby excluding miners employed during the periods of highest exposure and focusing on miners who tend to have higher quality assessments of radon progeny exposures). We derived estimates of excess relative rate per 100 working level months (ERR/100 WLM) for mortality from lung cancer. RESULTS: The analysis included 1.9 million person-years of observation and 1,217 deaths due to lung cancer. The relative rate of lung cancer increased in a linear fashion with cumulative exposure to radon progeny (ERR/100 WLM=1.33; 95% CI: 0.89, 1.88). The association was modified by attained age, age at exposure, and annual exposure rate; for attained ages <55 y, the ERR/100 WLM was 8.38 (95% CI: 3.30, 18.99) among miners who were exposed at ≥35 years of age and at annual exposure rates of <0.5 working levels. This association decreased with older attained ages, younger ages at exposure, and higher exposure rates. DISCUSSION: Estimates of association between radon progeny exposure and lung cancer mortality among relatively contemporary miners are coherent with estimates used to inform current protection guidelines. https://doi.org/10.1289/EHP10669.


Asunto(s)
Neoplasias Pulmonares , Mineros , Neoplasias Inducidas por Radiación , Enfermedades Profesionales , Exposición Profesional , Radón , Uranio , Humanos , Masculino , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/etiología , Hijas del Radón
17.
J Radiol Prot ; 42(2)2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35417894

RESUMEN

Radiation detriment is a concept to quantify the burden of stochastic effects from exposure of the human population to low-dose and/or low-dose-rate ionising radiation. As part of a thorough review of the system of radiological protection, the International Commission on Radiological Protection (ICRP) has compiled a report on radiation detriment calculation methodology as Publication 152. It provides a historical review of the detriment calculation with details of the procedure used in ICRP Publication 103. A selected sensitivity analysis was conducted to identify the parameters and calculation conditions that can be major sources of variation and uncertainty. It has demonstrated that sex, age at exposure, dose and dose-rate effectiveness factor, dose assumption in the lifetime risk calculation, and lethality fraction have a substantial impact on the calculated values of radiation detriment. Discussions are also made on the issues to be addressed and possible ways for improvement toward the revision of general recommendations. These include update of the reference population data and cancer severity parameters, revision of cancer risk models, and better handling of the variation with sex and age. Finally, emphasis is placed on transparency and traceability of the calculation, along with the need to improve the way of expressing and communicating the detriment.


Asunto(s)
Exposición a la Radiación , Protección Radiológica , Humanos , Dosis de Radiación , Protección Radiológica/métodos , Radiación Ionizante , Riesgo
18.
Int J Radiat Biol ; 98(12): 1694-1703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34919011

RESUMEN

BACKGROUND: The purpose of toxicology is to protect human health and the environment. To support this, the Organisation for Economic Co-operation and Development (OECD), operating via its Extended Advisory Group for Molecular Screening and Toxicogenomics (EAGMST), has been developing the Adverse Outcome Pathway (AOP) approach to consolidate evidence for chemical toxicity spanning multiple levels of biological organization. The knowledge transcribed into AOPs provides a structured framework to transparently organize data, examine the weight of evidence of the AOP, and identify causal relationships between exposure to stressors and adverse effects of regulatory relevance. The AOP framework has undergone substantial maturation in the field of hazard characterization of chemicals over the last decade, and has also recently gained attention from the radiation community as a means to advance the mechanistic understanding of human and ecological health effects from exposure to ionizing radiation at low dose and low dose-rates. To fully exploit the value of such approaches for facilitating risk assessment and management in the field of radiation protection, solicitation of experiences and active cooperation between chemical and radiation communities are needed. As a result, the Radiation and Chemical (Rad/Chem) AOP joint topical group was formed on June 1, 2021 as part of the initiative from the High Level Group on Low Dose Research (HLG-LDR). HLG-LDR is overseen by the OECD Nuclear Energy Agency (NEA) Committee on Radiation Protection and Public Health (CRPPH). The main aims of the joint AOP topical group are to advance the use of AOPs in radiation research and foster broader implementation of AOPs into hazard and risk assessment. With global representation, it serves as a forum to discuss, identify and develop joint initiatives that support research and take on regulatory challenges. CONCLUSION: The Rad/Chem AOP joint topical group will specifically engage, promote, and implement the use of the AOP framework to: (a) organize and evaluate mechanistic knowledge relevant to the protection of human and ecosystem health from radiation; (b) identify data gaps and research needs pertinent to expanding knowledge of low dose and low dose-rate radiation effects; and (c) demonstrate utility to support risk assessment by developing radiation-relevant case studies. It is envisioned that the Rad/Chem AOP joint topical group will actively liaise with the OECD EAGMST AOP developmental program to collectively advance areas of common interest and, specifically, provide recommendations for harmonization of the AOP framework to accommodate non-chemical stressors, such as radiation.


Asunto(s)
Rutas de Resultados Adversos , Protección Radiológica , Humanos , Ecosistema , Medición de Riesgo
19.
Cancers (Basel) ; 15(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36612076

RESUMEN

Cohorts of nuclear workers are particularly relevant to study the health effects of protracted exposures to low doses at low dose-rates of ionizing radiation (IR). In France, a cohort of nuclear workers badge-monitored for external IR exposure has been followed-up for several decades. Its size and follow-up period have recently been extended. The present paper focuses on mortality from both cancer and non-cancer diseases in this cohort. The SELTINE cohort of nuclear workers employed by CEA, Orano, and EDF companies was followed-up for mortality from 1968 to 2014. Mortality in the cohort was compared to that in the French general population. Poisson regression methods were used to estimate excess relative rates of mortality per unit of cumulative dose of IR, adjusted for calendar year, age, company, duration of employment, and socioeconomic status. The cohort included 80,348 workers. At the end of the follow-up, the mean attained age was 63 years, and 15,695 deaths were observed. A strong healthy worker effect was observed overall. A significant excess of pleural cancer mortality was observed but not associated with IR dose. Death from solid cancers was positively but non-significantly associated with radiation. Death from leukaemia (excluding chronic lymphocytic leukaemia), dementia, and Alzheimer's disease were positively and significantly associated with IR dose. Estimated dose-risk relationships were consistent with those from other nuclear worker studies for all solid cancers and leukaemia but remained associated with large uncertainty. The association between IR dose and dementia mortality risk should be interpreted with caution and requires further investigation by other studies.

20.
Radiat Prot Dosimetry ; 195(1): 1-20, 2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34278430

RESUMEN

The International Commission on Radiological Protection (ICRP) publishes guidance on protection against radon exposure in homes and workplaces. ICRP Publication 137 recommends a dose coefficient of 3 mSv per mJ h m-3 (~10 mSv WLM-1) to be used in most circumstances of radon exposure, for workers in buildings and in underground mines. Recently, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reviewed radon epidemiology and dosimetry and concluded that its established dose coefficient of 1.6 mSv per mJ h m-3 (5.7 mSv WLM-1) should be retained for use in its comparisons of radiation exposures from different sources in a population. This paper explains and compares the reviews of the scientific evidence from UNSCEAR and ICRP. It is shown that the UNSCEAR and ICRP reviews are consistent and support the use of the ICRP reference dose coefficients for radiation protection purposes. It is concluded that the ICRP dose coefficient should be used to calculate doses to workers.


Asunto(s)
Contaminantes Radiactivos del Aire , Exposición Profesional , Protección Radiológica , Radón , Contaminantes Radiactivos del Aire/análisis , Humanos , Exposición Profesional/análisis , Dosis de Radiación , Radón/análisis , Naciones Unidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...