Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
iScience ; 26(4): 106314, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37009228

RESUMEN

Skin plays central roles in systemic physiology, and it undergoes significant functional changes during aging. Members of the peroxisome proliferator-activated receptor-gamma coactivator (PGC-1) family (PGC-1s) are key regulators of the biology of numerous tissues, yet we know very little about their impact on skin functions. Global gene expression profiling and gene silencing in keratinocytes uncovered that PGC-1s control the expression of metabolic genes as well as that of terminal differentiation programs. Glutamine emerged as a key substrate promoting mitochondrial respiration, keratinocyte proliferation, and the expression of PGC-1s and terminal differentiation programs. Importantly, gene silencing of PGC-1s reduced the thickness of a reconstructed living human epidermal equivalent. Exposure of keratinocytes to a salicylic acid derivative potentiated the expression of PGC-1s and terminal differentiation genes and increased mitochondrial respiration. Overall, our results show that the PGC-1s are essential effectors of epidermal physiology, revealing an axis that could be targeted in skin conditions and aging.

2.
Cancer Lett ; 541: 215738, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35594996

RESUMEN

Mitochondria are specialized metabolic and immune organelles that have important roles in tumor progression, metastasis, and response to chemotherapy and immunotherapy. Mitochondrial biogenesis and functions are under the control of the peroxisome-proliferator activated receptor-gamma (PGC-1) transcriptional coactivators. Recent research unveiled the role of PGC-1α in bolstering mitochondrial oxidative functions and in the suppression of metastasis in melanoma, but the role of PGC-1s in tumor immunology remains elusive. Herein, we show that low PGC-1s expression in human melanoma tumors is associated with increased expression of a repertoire of immunosuppressive (CD73, PD-L2, Galectin-9) and pro-inflammatory (IL-8, TNF, IL-1ß) transcripts, and that experimental depletion of PGC-1ß recapitulates this signature in human melanoma cell lines. The depletion of PGC-1ß reduces the expression of HSPA9, impairs mitochondrial activity, and leads to cell cycle arrest. Using pharmacological and gene silencing approaches, we further show that MEK1/2 and IRF-1 mediate the observed immune transcriptional response. Overall, this research suggests that mitochondrial biogenesis modulators can modulate tumor progression, immune evasion, and response to therapeutics through transcriptional control of immune pathways.


Asunto(s)
Melanoma , Mitocondrias , Biogénesis de Organelos , Proteínas de Unión al ARN , Expresión Génica/inmunología , Humanos , Factor 1 Regulador del Interferón , Melanoma/genética , Melanoma/metabolismo , Mitocondrias/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...