RESUMEN
BACKGROUND: Trivalent inactivated influenza vaccine effectiveness was low in a prospective cohort of healthcare personnel (HCP) in Israel from 2016-2019. We conducted a randomized immunogenicity trial of quadrivalent recombinant influenza vaccine (RIV4) and standard-dose inactivated influenza vaccine (IIV4) among frequently and infrequently vaccinated previous cohort participants. METHODS: From October 2019 to January 2020, we enrolled and randomly allocated HCP from two Israeli hospitals to receive IIV4 or RIV4. Hemagglutination inhibition (HAI) antibody titers against 2019-2020 vaccine reference influenza viruses were compared between vaccine groups using geometric mean titer (GMT) ratios from sera collected one-month post-vaccination and by frequency of vaccination in the past 5 years (>2 versus ≤2). RESULTS: Among 415 HCP, the GMT ratio comparing RIV4 to IIV4 was 2.0 (95% confidence interval [CI] 1.7-2.7) for A(H1N1)pdm09, 1.6 (95% CI: 1.3-1.9) for A(H3N2), 1.8 (95% CI: 1.4-2.2) for B(Yamagata), and 1.1 (95% CI: 0.9-1.4) for B(Victoria). Similarly, RIV4 elicited higher HAI titers than IIV4 against all 2019-2020 vaccine reference viruses except B(Victoria) among infrequently and frequently vaccinated HCP (lower bound of GMT ratio 95% CIs ≥1.0). CONCLUSIONS: RIV4 had improved immunogenicity for influenza vaccine strains among both infrequent and frequent vaccinees compared to standard-dose IIV4.
RESUMEN
BACKGROUND: COVID-19 is a strong risk factor for venous thromboembolism (VTE). Few studies have evaluated the effectiveness of COVID-19 vaccination in preventing hospitalization for COVID-19 with VTE. METHODS: Adults hospitalized at 21 sites between March 2021 and October 2022 with symptoms of acute respiratory illness were assessed for COVID-19, completion of the original monovalent mRNA COVID-19 vaccination series, and VTE. Prevalence of VTE was compared between unvaccinated and vaccinated patients with COVID-19. Vaccine effectiveness in preventing COVID-19 hospitalization with VTE was calculated using a test negative design. Vaccine effectiveness was also stratified by predominant circulating SARS-CoV-2 variant. RESULTS: Among 18,811 patients (median age 63 [IQR:50-73], 49% women, 59% non-Hispanic White, 20% non-Hispanic Black, 14% Hispanic, and median of 2 comorbid conditions [IQR:1-3]), 9,792 were admitted with COVID-19 (44% vaccinated) and 9,019 were test-negative controls (73% vaccinated). Among patients with COVID-19, 601 were diagnosed with VTE by hospital day 28, of whom 170 were vaccinated. VTE was more common among unvaccinated than vaccinated COVID-19 patients (7.8% versus 4.0%; p=0.001). Vaccine effectiveness against COVID-19 hospitalization with VTE was 84% (95% CI: 80-87%) overall. Vaccine effectiveness stratified by predominant circulating variant was 88% (73-95%) for alpha, 93% (90-95%) for delta, and 68% (58-76%) for omicron variants. CONCLUSIONS AND RELEVANCE: Vaccination with the original monovalent mRNA series was associated with a decrease in COVID-19 hospitalization with VTE, though data detailing prior history of VTE and use of anticoagulation were not available. These findings will inform risk-benefit considerations for those considering vaccination.
RESUMEN
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNVs) were identified at a 0.5% frequency threshold. Within-host populations exhibited low diversity, with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4 × 10-6 vs. 9.42 × 10-7 and 3.45 × 10-6, P < .001). Forty-five iSNVs had evidence of parallel evolution but were not over-represented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNVs across segments. A Wright-Fisher approximate Bayesian computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to genetic drift and purifying selection, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
RESUMEN
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNV) were identified at a 0.5% frequency threshold. Within-host populations were subject to purifying selection with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4×10-6 vs. 9.42×10-7 and 3.45×10-6, p <0.001). Forty-five iSNV had evidence of parallel evolution, but were not overrepresented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNV across segments. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to purifying selection and genetic drift, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
RESUMEN
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
RESUMEN
BACKGROUND: Assessing variant-specific COVID-19 vaccine effectiveness (VE) and severity can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial divergence from co-circulating XBB lineages. METHODS: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. RESULTS: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. CONCLUSIONS: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB.
RESUMEN
BACKGROUND: Viral respiratory illnesses are the most common acute illnesses experienced and generally follow a predicted pattern over time. The SARS-CoV-2 pandemic interrupted that pattern. METHODS: The HIVE (Household Influenza Vaccine Evaluation) study was established in 2010 to follow a cohort of Southeast Michigan households over time. Initially focused on influenza, surveillance was expanded to include other major respiratory pathogens, and, starting in 2015, the population was followed year-round. Symptoms of acute illness were reported, and respiratory specimens were collected and tested to identify viral infections. Based on the known population being followed, virus-specific incidence was calculated. RESULTS: From 2015 to 2022, 1755 participants were followed in HIVE for 7785 person-years with 7833 illnesses documented. Before the pandemic, rhinovirus (RV) and common cold human coronaviruses (HCoVs) were the viruses most frequently identified, and incidence decreased with increasing age. Type A influenza was next but with comparable incidence by age. Parainfluenza and respiratory syncytial viruses were less frequent overall, followed by human metapneumoviruses. Incidence was highest in young children, but infections were frequently documented in all age groups. Seasonality followed patterns established decades ago. The SARS-CoV-2 pandemic disrupted these patterns, except for RV and, to a lesser extent, HCoVs. In the first two years of the pandemic, RV incidence far exceeded that of SARS-CoV-2. CONCLUSION: Longitudinal cohort studies are important in comparing the incidence, seasonality, and characteristics of different respiratory viral infections. Studies documented the differential effect of the pandemic on the incidence of respiratory viruses in addition to SARS-CoV-2.
RESUMEN
Background: Assessing COVID-19 vaccine effectiveness (VE) and severity of SARS-CoV-2 variants can inform public health risk assessments and decisions about vaccine composition. BA.2.86 and its descendants, including JN.1 (referred to collectively as "JN lineages"), emerged in late 2023 and exhibited substantial genomic divergence from co-circulating XBB lineages. Methods: We analyzed patients hospitalized with COVID-19-like illness at 26 hospitals in 20 U.S. states admitted October 18, 2023-March 9, 2024. Using a test-negative, case-control design, we estimated the effectiveness of an updated 2023-2024 (Monovalent XBB.1.5) COVID-19 vaccine dose against sequence-confirmed XBB and JN lineage hospitalization using logistic regression. Odds of severe outcomes, including intensive care unit (ICU) admission and invasive mechanical ventilation (IMV) or death, were compared for JN versus XBB lineage hospitalizations using logistic regression. Results: 585 case-patients with XBB lineages, 397 case-patients with JN lineages, and 4,580 control-patients were included. VE in the first 7-89 days after receipt of an updated dose was 54.2% (95% CI = 36.1%-67.1%) against XBB lineage hospitalization and 32.7% (95% CI = 1.9%-53.8%) against JN lineage hospitalization. Odds of ICU admission (adjusted odds ratio [aOR] 0.80; 95% CI = 0.46-1.38) and IMV or death (aOR 0.69; 95% CI = 0.34-1.40) were not significantly different among JN compared to XBB lineage hospitalizations. Conclusions: Updated 2023-2024 COVID-19 vaccination provided protection against both XBB and JN lineage hospitalization, but protection against the latter may be attenuated by immune escape. Clinical severity of JN lineage hospitalizations was not higher relative to XBB lineage hospitalizations.
RESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates.
RESUMEN
Since the influenza pandemic in 1968, influenza A(H3N2) viruses have become endemic. In this state, H3N2 viruses continuously evolve to overcome immune pressure as a result of prior infection or vaccination, as is evident from the accumulation of mutations in the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). However, phylogenetic studies have also demonstrated ongoing evolution in the influenza A(H3N2) virus RNA polymerase complex genes. The RNA polymerase complex of seasonal influenza A(H3N2) viruses produces mRNA for viral protein synthesis and replicates the negative sense viral RNA genome (vRNA) through a positive sense complementary RNA intermediate (cRNA). Presently, the consequences and selection pressures driving the evolution of the polymerase complex remain largely unknown. Here, we characterize the RNA polymerase complex of seasonal influenza A(H3N2) viruses representative of nearly 50 years of influenza A(H3N2) virus evolution. The H3N2 polymerase complex is a reassortment of human and avian influenza virus genes. We show that since 1968, influenza A(H3N2) viruses have increased the transcriptional activity of the polymerase complex while retaining a close balance between mRNA, vRNA, and cRNA levels. Interestingly, the increased polymerase complex activity did not result in increased replicative ability on differentiated human airway epithelial (HAE) cells. We hypothesize that the evolutionary increase in polymerase complex activity of influenza A(H3N2) viruses may compensate for the reduced HA receptor binding and avidity that is the result of the antigenic evolution of influenza A(H3N2) viruses.
RESUMEN
Importance: On June 21, 2023, the Centers for Disease Control and Prevention recommended the first respiratory syncytial virus (RSV) vaccines for adults aged 60 years and older using shared clinical decision-making. Understanding the severity of RSV disease in adults can help guide this clinical decision-making. Objective: To describe disease severity among adults hospitalized with RSV and compare it with the severity of COVID-19 and influenza disease by vaccination status. Design, Setting, and Participants: In this cohort study, adults aged 18 years and older admitted to the hospital with acute respiratory illness and laboratory-confirmed RSV, SARS-CoV-2, or influenza infection were prospectively enrolled from 25 hospitals in 20 US states from February 1, 2022, to May 31, 2023. Clinical data during each patient's hospitalization were collected using standardized forms. Data were analyzed from August to October 2023. Exposures: RSV, SARS-CoV-2, or influenza infection. Main Outcomes and Measures: Using multivariable logistic regression, severity of RSV disease was compared with COVID-19 and influenza severity, by COVID-19 and influenza vaccination status, for a range of clinical outcomes, including the composite of invasive mechanical ventilation (IMV) and in-hospital death. Results: Of 7998 adults (median [IQR] age, 67 [54-78] years; 4047 [50.6%] female) included, 484 (6.1%) were hospitalized with RSV, 6422 (80.3%) were hospitalized with COVID-19, and 1092 (13.7%) were hospitalized with influenza. Among patients with RSV, 58 (12.0%) experienced IMV or death, compared with 201 of 1422 unvaccinated patients with COVID-19 (14.1%) and 458 of 5000 vaccinated patients with COVID-19 (9.2%), as well as 72 of 699 unvaccinated patients with influenza (10.3%) and 20 of 393 vaccinated patients with influenza (5.1%). In adjusted analyses, the odds of IMV or in-hospital death were not significantly different among patients hospitalized with RSV and unvaccinated patients hospitalized with COVID-19 (adjusted odds ratio [aOR], 0.82; 95% CI, 0.59-1.13; P = .22) or influenza (aOR, 1.20; 95% CI, 0.82-1.76; P = .35); however, the odds of IMV or death were significantly higher among patients hospitalized with RSV compared with vaccinated patients hospitalized with COVID-19 (aOR, 1.38; 95% CI, 1.02-1.86; P = .03) or influenza disease (aOR, 2.81; 95% CI, 1.62-4.86; P < .001). Conclusions and Relevance: Among adults hospitalized in this US cohort during the 16 months before the first RSV vaccine recommendations, RSV disease was less common but similar in severity compared with COVID-19 or influenza disease among unvaccinated patients and more severe than COVID-19 or influenza disease among vaccinated patients for the most serious outcomes of IMV or death.
Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Estados Unidos/epidemiología , Adulto , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Virus Sincitiales Respiratorios , Gripe Humana/epidemiología , Estudios de Cohortes , Mortalidad Hospitalaria , COVID-19/epidemiología , SARS-CoV-2 , Vacunas contra la Influenza/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/terapiaRESUMEN
Importance: Bivalent mRNA COVID-19 vaccines were recommended in the US for children and adolescents aged 12 years or older on September 1, 2022, and for children aged 5 to 11 years on October 12, 2022; however, data demonstrating the effectiveness of bivalent COVID-19 vaccines are limited. Objective: To assess the effectiveness of bivalent COVID-19 vaccines against SARS-CoV-2 infection and symptomatic COVID-19 among children and adolescents. Design, Setting, and Participants: Data for the period September 4, 2022, to January 31, 2023, were combined from 3 prospective US cohort studies (6 sites total) and used to estimate COVID-19 vaccine effectiveness among children and adolescents aged 5 to 17 years. A total of 2959 participants completed periodic surveys (demographics, household characteristics, chronic medical conditions, and COVID-19 symptoms) and submitted weekly self-collected nasal swabs (irrespective of symptoms); participants submitted additional nasal swabs at the onset of any symptoms. Exposure: Vaccination status was captured from the periodic surveys and supplemented with data from state immunization information systems and electronic medical records. Main Outcome and Measures: Respiratory swabs were tested for the presence of the SARS-CoV-2 virus using reverse transcriptase-polymerase chain reaction. SARS-CoV-2 infection was defined as a positive test regardless of symptoms. Symptomatic COVID-19 was defined as a positive test and 2 or more COVID-19 symptoms within 7 days of specimen collection. Cox proportional hazards models were used to estimate hazard ratios for SARS-CoV-2 infection and symptomatic COVID-19 among participants who received a bivalent COVID-19 vaccine dose vs participants who received no vaccine or monovalent vaccine doses only. Models were adjusted for age, sex, race, ethnicity, underlying health conditions, prior SARS-CoV-2 infection status, geographic site, proportion of circulating variants by site, and local virus prevalence. Results: Of the 2959 participants (47.8% were female; median age, 10.6 years [IQR, 8.0-13.2 years]; 64.6% were non-Hispanic White) included in this analysis, 25.4% received a bivalent COVID-19 vaccine dose. During the study period, 426 participants (14.4%) had laboratory-confirmed SARS-CoV-2 infection. Among these 426 participants, 184 (43.2%) had symptomatic COVID-19, 383 (89.9%) were not vaccinated or had received only monovalent COVID-19 vaccine doses (1.38 SARS-CoV-2 infections per 1000 person-days), and 43 (10.1%) had received a bivalent COVID-19 vaccine dose (0.84 SARS-CoV-2 infections per 1000 person-days). Bivalent vaccine effectiveness against SARS-CoV-2 infection was 54.0% (95% CI, 36.6%-69.1%) and vaccine effectiveness against symptomatic COVID-19 was 49.4% (95% CI, 22.2%-70.7%). The median observation time after vaccination was 276 days (IQR, 142-350 days) for participants who received only monovalent COVID-19 vaccine doses vs 50 days (IQR, 27-74 days) for those who received a bivalent COVID-19 vaccine dose. Conclusion and Relevance: The bivalent COVID-19 vaccines protected children and adolescents against SARS-CoV-2 infection and symptomatic COVID-19. These data demonstrate the benefit of COVID-19 vaccine in children and adolescents. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adolescente , Niño , Femenino , Humanos , Masculino , COVID-19/diagnóstico , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Estudios Prospectivos , SARS-CoV-2 , Vacunas de ARNm/uso terapéutico , Vacunas Combinadas/uso terapéutico , Preescolar , Eficacia de las Vacunas , Estados UnidosRESUMEN
In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. However, few estimates of updated vaccine effectiveness (VE) against medically attended illness are available. This analysis evaluated VE of an updated COVID-19 vaccine dose against COVID-19-associated emergency department (ED) or urgent care (UC) encounters and hospitalization among immunocompetent adults aged ≥18 years during September 2023-January 2024 using a test-negative, case-control design with data from two CDC VE networks. VE against COVID-19-associated ED/UC encounters was 51% (95% CI = 47%-54%) during the first 7-59 days after an updated dose and 39% (95% CI = 33%-45%) during the 60-119 days after an updated dose. VE estimates against COVID-19-associated hospitalization from two CDC VE networks were 52% (95% CI = 47%-57%) and 43% (95% CI = 27%-56%), with a median interval from updated dose of 42 and 47 days, respectively. Updated COVID-19 vaccine provided increased protection against COVID-19-associated ED/UC encounters and hospitalization among immunocompetent adults. These results support CDC recommendations for updated 2023-2024 COVID-19 vaccination. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccine.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Adolescente , COVID-19/epidemiología , COVID-19/prevención & control , Comités Consultivos , Servicio de Urgencia en Hospital , HospitalizaciónRESUMEN
BACKGROUND: Prolonged SARS-CoV-2 infections in people who are immunocompromised might predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection have not been systematically investigated. We aimed to assess risk factors for prolonged SARS-CoV-2 infection and associated intrahost evolution. METHODS: In this multicentre, prospective analysis, participants were enrolled at five US medical centres. Eligible patients were aged 18 years or older, were SARS-CoV-2-positive in the previous 14 days, and had a moderately or severely immunocompromising condition or treatment. Nasal specimens were tested by real-time RT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. FINDINGS: From April 11, 2022, to Oct 1, 2022, 156 patients began the enrolment process, of whom 150 were enrolled and included in the analyses. Participants had B-cell malignancy or anti-B-cell therapy (n=18), solid organ transplantation or haematopoietic stem-cell transplantation (HSCT; n=59), AIDS (n=5), non-B-cell malignancy (n=23), and autoimmune or autoinflammatory conditions (n=45). 38 (25%) participants were real-time RT-PCR-positive and 12 (8%) were culture-positive 21 days or longer after initial SARS-CoV-2 detection or illness onset. Compared with the group with autoimmune or autoinflammatory conditions, patients with B-cell dysfunction (adjusted hazard ratio 0·32 [95% CI 0·15-0·64]), solid organ transplantation or HSCT (0·60 [0·38-0·94]), and AIDS (0·28 [0·08-1·00]) had longer duration of infection, defined as time to last positive real-time RT-PCR test. There was no significant difference in the non-B-cell malignancy group (0·58 [0·31-1·09]). Consensus de novo spike mutations were identified in five individuals who were real-time RT-PCR-positive longer than 56 days; 14 (61%) of 23 were in the receptor-binding domain. Mutations shared by multiple individuals were rare (<5%) in global circulation. INTERPRETATION: In this cohort, prolonged replication-competent omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting longer than 56 days accumulated spike mutations, which were distinct from those seen globally. Populations at high risk should be targeted for repeated testing and treatment and monitored for the emergence of antiviral resistance. FUNDING: US Centers for Disease Control and Prevention.
Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , COVID-19 , Neoplasias , Humanos , Linfocitos B , COVID-19/epidemiología , SARS-CoV-2/genética , Estados Unidos/epidemiología , Estudios ProspectivosRESUMEN
BACKGROUND: Although the incidence of hospital-associated respiratory virus infection (HARVI) is well recognized, the risk factors for infection and impact on patient outcomes are not well characterized. METHODS: We identified a cohort of all inpatient admissions ≥24 hours duration at a single academic medical center from 2017 to 2020. HARVI were defined as respiratory virus detected in a test ordered after the 95th percentile of the virus-specific incubation period. Risk factors for HARVI were assessed using Cox proportional hazards models of the competing outcomes of HARVI and discharge. The associations between time-varying HARVI status and the rates of ICU admission, discharge, and in-hospital death were estimated using Cox-proportional hazards models in a competing risk framework. RESULTS: HARVI incidences were 8.8 and 3.0 per 10,000 admission days for pediatric and adult patients, respectively. For adults, congestive heart failure, renal disease, and cancer increased HARVI risk independent of their associations with length of stay. HARVI risk was also elevated for patients admitted in September-June relative to July admissions. For pediatric patients, cardiovascular and respiratory conditions, cancer, medical device dependence, and admission in December increased HARVI risk. Lengths of stay were longer for adults with HARVI compared to those without, and hospital-associated influenza A was associated with increased risk of death. Rates of ICU admission were increased in the 5 days after HARVI identification for adult and pediatric patients. HARVI was not associated with length of stay or death among pediatric patients. CONCLUSIONS: HARVI is associated chronic health conditions and increases morbidity and mortality.
Asunto(s)
Neoplasias , Virosis , Adulto , Humanos , Niño , Incidencia , Mortalidad Hospitalaria , Hospitales , Tiempo de Internación , Estudios Retrospectivos , Unidades de Cuidados IntensivosRESUMEN
BACKGROUND: Influenza circulation during the 2022-2023 season in the United States largely returned to pre-coronavirus disease 2019 (COVID-19)-pandemic patterns and levels. Influenza A(H3N2) viruses were detected most frequently this season, predominately clade 3C.2a1b.2a, a close antigenic match to the vaccine strain. METHODS: To understand effectiveness of the 2022-2023 influenza vaccine against influenza-associated hospitalization, organ failure, and death, a multicenter sentinel surveillance network in the United States prospectively enrolled adults hospitalized with acute respiratory illness between 1 October 2022, and 28 February 2023. Using the test-negative design, vaccine effectiveness (VE) estimates against influenza-associated hospitalization, organ failures, and death were measured by comparing the odds of current-season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative control-patients. RESULTS: A total of 3707 patients, including 714 influenza cases (33% vaccinated) and 2993 influenza- and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls (49% vaccinated) were analyzed. VE against influenza-associated hospitalization was 37% (95% confidence interval [CI]: 27%-46%) and varied by age (18-64 years: 47% [30%-60%]; ≥65 years: 28% [10%-43%]), and virus (A[H3N2]: 29% [6%-46%], A[H1N1]: 47% [23%-64%]). VE against more severe influenza-associated outcomes included: 41% (29%-50%) against influenza with hypoxemia treated with supplemental oxygen; 65% (56%-72%) against influenza with respiratory, cardiovascular, or renal failure treated with organ support; and 66% (40%-81%) against influenza with respiratory failure treated with invasive mechanical ventilation. CONCLUSIONS: During an early 2022-2023 influenza season with a well-matched influenza vaccine, vaccination was associated with reduced risk of influenza-associated hospitalization and organ failure.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adulto , Humanos , Estados Unidos/epidemiología , Adolescente , Adulto Joven , Persona de Mediana Edad , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A , Eficacia de las Vacunas , Virus de la Influenza B , Hospitalización , Vacunación , Estaciones del AñoRESUMEN
SARS-CoV-2 Omicron BA.2.75 has diversified into multiple subvariants with additional spike mutations and several are expanding in prevalence, particularly CH.1.1 and BN.1. Here, we investigated the viral receptor affinities and neutralization evasion properties of major BA.2.75 subvariants actively circulating in different regions worldwide. We found two distinct evolutionary pathways and three newly identified mutations that shaped the virological features of these subvariants. One phenotypic group exhibited a discernible decrease in viral receptor affinities, but a noteworthy increase in resistance to antibody neutralization, as exemplified by CH.1.1, which is apparently as resistant as XBB.1.5. In contrast, a second group demonstrated a substantial increase in viral receptor affinity but only a moderate increase in antibody evasion, as exemplified by BN.1. We also observed that all prevalent SARS-CoV-2 variants in the circulation presently, except for BN.1, exhibit profound levels of antibody evasion, suggesting this is the dominant determinant of virus transmissibility today.
RESUMEN
ABSTRACT: Disease progression during SARS-CoV-2 infection is tightly linked to the fate of lung epithelial cells, with severe cases of COVID-19 characterized by direct injury of the alveolar epithelium and an impairment in its regeneration from progenitor cells. The molecular pathways that govern respiratory epithelial cell death and proliferation during SARS-CoV-2 infection, however, remain unclear. We now report a high-throughput CRISPR screen for host genetic modifiers of the survival and proliferation of SARS-CoV-2-infected Calu-3 respiratory epithelial cells. The top four genes identified in our screen encode components of the same type I interferon (IFN-I) signaling complexIFNAR1, IFNAR2, JAK1, and TYK2. The fifth gene, ACE2, was an expected control encoding the SARS-CoV-2 viral receptor. Surprisingly, despite the antiviral properties of IFN-I signaling, its disruption in our screen was associated with an increase in Calu-3 cell fitness. We validated this effect and found that IFN-I signaling did not sensitize SARS-CoV-2-infected cultures to cell death but rather inhibited the proliferation of surviving cells after the early peak of viral replication and cytopathic effect. We also found that IFN-I signaling alone, in the absence of viral infection, was sufficient to induce this delayed antiproliferative response in both Calu-3 cells and iPSC-derived type 2 alveolar epithelial cells. Together, these findings highlight a cell autonomous antiproliferative response by respiratory epithelial cells to persistent IFN-I signaling during SARS-CoV-2 infection. This response may contribute to the deficient alveolar regeneration that has been associated with COVID-19 lung injury and represents a promising area for host-targeted therapeutic development.
Asunto(s)
COVID-19 , Células Epiteliales , Interferón Tipo I , Pulmón , Humanos , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Células Epiteliales/patología , Células Epiteliales/virología , Interferón Tipo I/inmunología , Pulmón/patología , Pulmón/virología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Línea Celular , Proliferación CelularRESUMEN
On June 21, 2023, CDC's Advisory Committee on Immunization Practices recommended respiratory syncytial virus (RSV) vaccination for adults aged ≥60 years, offered to individual adults using shared clinical decision-making. Informed use of these vaccines requires an understanding of RSV disease severity. To characterize RSV-associated severity, 5,784 adults aged ≥60 years hospitalized with acute respiratory illness and laboratory-confirmed RSV, SARS-CoV-2, or influenza infection were prospectively enrolled from 25 hospitals in 20 U.S. states during February 1, 2022-May 31, 2023. Multivariable logistic regression was used to compare RSV disease severity with COVID-19 and influenza severity on the basis of the following outcomes: 1) standard flow (<30 L/minute) oxygen therapy, 2) high-flow nasal cannula (HFNC) or noninvasive ventilation (NIV), 3) intensive care unit (ICU) admission, and 4) invasive mechanical ventilation (IMV) or death. Overall, 304 (5.3%) enrolled adults were hospitalized with RSV, 4,734 (81.8%) with COVID-19 and 746 (12.9%) with influenza. Patients hospitalized with RSV were more likely to receive standard flow oxygen, HFNC or NIV, and ICU admission than were those hospitalized with COVID-19 or influenza. Patients hospitalized with RSV were more likely to receive IMV or die compared with patients hospitalized with influenza (adjusted odds ratio = 2.08; 95% CI = 1.33-3.26). Among hospitalized older adults, RSV was less common, but was associated with more severe disease than COVID-19 or influenza. High disease severity in older adults hospitalized with RSV is important to consider in shared clinical decision-making regarding RSV vaccination.
Asunto(s)
COVID-19 , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Anciano , COVID-19/epidemiología , COVID-19/terapia , Gripe Humana/epidemiología , Gripe Humana/terapia , SARS-CoV-2 , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/terapia , Hospitalización , Gravedad del Paciente , OxígenoRESUMEN
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant, BA.2.86, has emerged and spread to numerous countries worldwide, raising alarm because its spike protein contains 34 additional mutations compared with its BA.2 predecessor1. We examined its antigenicity using human sera and monoclonal antibodies (mAbs). Reassuringly, BA.2.86 was no more resistant to human sera than the currently dominant XBB.1.5 and EG.5.1, indicating that the new subvariant would not have a growth advantage in this regard. Importantly, sera from people who had XBB breakthrough infection exhibited robust neutralizing activity against all viruses tested, suggesting that upcoming XBB.1.5 monovalent vaccines could confer added protection. Although BA.2.86 showed greater resistance to mAbs to subdomain 1 (SD1) and receptor-binding domain (RBD) class 2 and 3 epitopes, it was more sensitive to mAbs to class 1 and 4/1 epitopes in the 'inner face' of the RBD that is exposed only when this domain is in the 'up' position. We also identified six new spike mutations that mediate antibody resistance, including E554K that threatens SD1 mAbs in clinical development. The BA.2.86 spike also had a remarkably high receptor affinity. The ultimate trajectory of this new SARS-CoV-2 variant will soon be revealed by continuing surveillance, but its worldwide spread is worrisome.