Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Commun ; 15(1): 3075, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594286

RESUMEN

Immune checkpoint blockade (ICB) has improved outcome for patients with metastatic melanoma but not all benefit from treatment. Several immune- and tumor intrinsic features are associated with clinical response at baseline. However, we need to further understand the molecular changes occurring during development of ICB resistance. Here, we collect biopsies from a cohort of 44 patients with melanoma after progression on anti-CTLA4 or anti-PD1 monotherapy. Genetic alterations of antigen presentation and interferon gamma signaling pathways are observed in approximately 25% of ICB resistant cases. Anti-CTLA4 resistant lesions have a sustained immune response, including immune-regulatory features, as suggested by multiplex spatial and T cell receptor (TCR) clonality analyses. One anti-PD1 resistant lesion harbors a distinct immune cell niche, however, anti-PD1 resistant tumors are generally immune poor with non-expanded TCR clones. Such immune poor microenvironments are associated with melanoma cells having a de-differentiated phenotype lacking expression of MHC-I molecules. In addition, anti-PD1 resistant tumors have reduced fractions of PD1+ CD8+ T cells as compared to ICB naïve metastases. Collectively, these data show the complexity of ICB resistance and highlight differences between anti-CTLA4 and anti-PD1 resistance that may underlie differential clinical outcomes of therapy sequence and combination.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Receptores de Antígenos de Linfocitos T , Microambiente Tumoral
2.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36040798

RESUMEN

Cellular stress contributes to the capacity of melanoma cells to undergo phenotype switching into highly migratory and drug-tolerant dedifferentiated states. Such dedifferentiated melanoma cell states are marked by loss of melanocyte-specific gene expression and increase of mesenchymal markers. Two crucial transcription factors, microphthalmia-associated transcription factor (MITF) and SRY-box transcription factor 10 (SOX10), important in melanoma development and progression, have been implicated in this process. In this study we describe that loss of MITF is associated with a distinct transcriptional program, MITF promoter hypermethylation, and poor patient survival in metastatic melanoma. From a comprehensive collection of melanoma cell lines, we observed that MITF-methylated cultures were subdivided in 2 distinct subtypes. Examining mRNA levels of neural crest-associated genes, we found that 1 subtype had lost the expression of several lineage genes, including SOX10. Intriguingly, SOX10 loss was associated with SOX10 gene promoter hypermethylation and distinct phenotypic and metastatic properties. Depletion of SOX10 in MITF-methylated melanoma cells using CRISPR/Cas9 supported these findings. In conclusion, this study describes the significance of melanoma state and the underlying functional properties explaining the aggressiveness of such states.


Asunto(s)
Melanoma , Factor de Transcripción Asociado a Microftalmía , ADN/metabolismo , Humanos , Melanocitos/patología , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Fenotipo , ARN Mensajero/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
4.
Clin Cancer Res ; 28(9): 1751-1758, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-34965949

RESUMEN

Tumor cells pose a challenge to the adaptive immune system, and its key cell types, T and B cells, have frequently been associated with an improved prognosis. The success of immune checkpoint blockade has confirmed the relevance of T cells. However, the role of B cells is increasingly recognized, and highlighted in this review. Recent data suggest that tumors contain a diverse set of B cells reflecting different developmental states and exerting functions such as antigen presentation, antibody production, and regulatory effects. Further, B cells are frequently located in tertiary lymphoid structures (TLS), which are immune cell niches that sustain an immune response at sites of chronic inflammation. TLSs in tumors display substantial heterogeneity, ranging from cell aggregates to mature structures with an active germinal center. Recent studies have provided insights into initiation, cellular and spatial composition, and function of TLS in a variety of cancer types; however, several critical issues still need to be resolved. Currently, initial reports are discerning the role of TLSs in immunotherapy, with the majority of studies observing TLSs to confer favorable patient outcome. Finally, TLS induction in tumors is evaluated, with the therapeutic aim to reactivate the host immune response.


Asunto(s)
Neoplasias , Estructuras Linfoides Terciarias , Linfocitos B , Centro Germinal/metabolismo , Humanos , Inmunoterapia , Neoplasias/patología , Microambiente Tumoral
5.
Cancer Immunol Immunother ; 71(3): 553-563, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34272988

RESUMEN

BACKGROUND: Studying tumor cell-T cell interactions in the tumor microenvironment (TME) can elucidate tumor immune escape mechanisms and help predict responses to cancer immunotherapy. METHODS: We selected 14 pairs of highly tumor-reactive tumor-infiltrating lymphocytes (TILs) and autologous short-term cultured cell lines, covering four distinct tumor types, and co-cultured TILs and tumors at sub-lethal ratios in vitro to mimic the interactions occurring in the TME. We extracted gene signatures associated with a tumor-directed T cell attack based on transcriptomic data of tumor cells. RESULTS: An autologous T cell attack induced pronounced transcriptomic changes in the attacked tumor cells, partially independent of IFN-γ signaling. Transcriptomic changes were mostly independent of the tumor histological type and allowed identifying common gene expression changes, including a shared gene set of 55 transcripts influenced by T cell recognition (Tumors undergoing T cell attack, or TuTack, focused gene set). TuTack scores, calculated from tumor biopsies, predicted the clinical outcome after anti-PD-1/anti-PD-L1 therapy in multiple tumor histologies. Notably, the TuTack scores did not correlate to the tumor mutational burden, indicating that these two biomarkers measure distinct biological phenomena. CONCLUSIONS: The TuTack scores measure the effects on tumor cells of an anti-tumor immune response and represent a comprehensive method to identify immunologically responsive tumors. Our findings suggest that TuTack may allow patient selection in immunotherapy clinical trials and warrant its application in multimodal biomarker strategies.


Asunto(s)
Biomarcadores de Tumor , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/etiología , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Biología Computacional/métodos , Contaminación de ADN , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inhibidores de Puntos de Control Inmunológico , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Especificidad de Órganos , Curva ROC , Células Tumorales Cultivadas
6.
Front Immunol ; 12: 705422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707600

RESUMEN

Detecting the entire repertoire of tumor-specific reactive tumor-infiltrating lymphocytes (TILs) is essential for investigating their immunological functions in the tumor microenvironment. Current in vitro assays identifying tumor-specific functional activation measure the upregulation of surface molecules, de novo production of antitumor cytokines, or mobilization of cytotoxic granules following recognition of tumor-antigens, yet there is no widely adopted standard method. Here we established an enhanced, yet simple, method for identifying simultaneously CD8+ and CD4+ tumor-specific reactive TILs in vitro, using a combination of widely known and available flow cytometry assays. By combining the detection of intracellular CD137 and de novo production of TNF and IFNγ after recognition of naturally-presented tumor antigens, we demonstrate that a larger fraction of tumor-specific and reactive CD8+ TILs can be detected in vitro compared to commonly used assays. This assay revealed multiple polyfunctionality-based clusters of both CD4+ and CD8+ tumor-specific reactive TILs. In situ, the combined detection of TNFRSF9, TNF, and IFNG identified most of the tumor-specific reactive TIL repertoire. In conclusion, we describe a straightforward method for efficient identification of the tumor-specific reactive TIL repertoire in vitro, which can be rapidly adopted in most cancer immunology laboratories.


Asunto(s)
Antígenos de Neoplasias/inmunología , Linfocitos T CD4-Positivos/química , Linfocitos T CD8-positivos/química , Interferón gamma/análisis , Linfocitos Infiltrantes de Tumor/química , Proteínas de Neoplasias/análisis , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/análisis , Factor de Necrosis Tumoral alfa/análisis , Antígenos CD/análisis , Apirasa/análisis , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Conjuntos de Datos como Asunto , Citometría de Flujo , Humanos , Cadenas alfa de Integrinas/análisis , Interferón gamma/biosíntesis , Interferón gamma/genética , Activación de Linfocitos/genética , Linfocitos Infiltrantes de Tumor/inmunología , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
7.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34210820

RESUMEN

PURPOSE: Despite impressive response rates following adoptive transfer of autologous tumor-infiltrating lymphocytes (TILs) in patients with metastatic melanoma, improvement is needed to increase the efficacy and broaden the applicability of this treatment. We evaluated the use of vemurafenib, a small-molecule BRAF inhibitor with immunomodulatory properties, as priming before TIL harvest and adoptive T cell therapy in a phase I/II clinical trial. METHODS: 12 patients were treated with vemurafenib for 7 days before tumor excision and during the following weeks until TIL infusion. TILs were grown from tumor fragments, expanded in vitro and reinfused to the patient preceded by a lymphodepleting chemotherapy regimen and followed by interleukin-2 infusion. Extensive immune monitoring, tumor profiling and T cell receptor sequencing were performed. RESULTS: No unexpected toxicity was observed, and treatment was well tolerated. Of 12 patients, 1 achieved a complete response, 8 achieved partial response and 3 achieved stable disease. A PR and the CR are ongoing for 23 and 43 months, respectively. In vitro anti-tumor reactivity was found in TILs from 10 patients, including all patients achieving objective response. Serum and tumor biomarker analyses indicate that baseline cytokine levels and the number of T cell clones may predict response to TIL therapy. Further, TCR sequencing suggested skewing of TCR repertoire during in vitro expansion, promoting certain low frequency clonotypes. CONCLUSIONS: Priming with vemurafenib before infusion of TILs was safe and feasible, and induced objective clinical responses in this cohort of patients with checkpoint inhibitor-resistant metastatic melanoma. In this trial, vemurafenib treatment seemed to decrease attrition and could be considered to bridge the waiting time while TILs are prepared.


Asunto(s)
Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Linfocitos T/metabolismo , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacología , Adulto Joven
8.
Nat Commun ; 12(1): 3707, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140478

RESUMEN

While the major drivers of melanoma initiation, including activation of NRAS/BRAF and loss of PTEN or CDKN2A, have been identified, the role of key transcription factors that impose altered transcriptional states in response to deregulated signaling is not well understood. The POU domain transcription factor BRN2 is a key regulator of melanoma invasion, yet its role in melanoma initiation remains unknown. Here, in a BrafV600E PtenF/+ context, we show that BRN2 haplo-insufficiency promotes melanoma initiation and metastasis. However, metastatic colonization is less efficient in the absence of Brn2. Mechanistically, BRN2 directly induces PTEN expression and in consequence represses PI3K signaling. Moreover, MITF, a BRN2 target, represses PTEN transcription. Collectively, our results suggest that on a PTEN heterozygous background somatic deletion of one BRN2 allele and temporal regulation of the other allele elicits melanoma initiation and progression.


Asunto(s)
Carcinogénesis/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes Supresores de Tumor , Proteínas de Homeodominio/metabolismo , Melanoma/metabolismo , Factores del Dominio POU/metabolismo , Neoplasias Cutáneas/metabolismo , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Haploinsuficiencia , Proteínas de Homeodominio/genética , Humanos , Inmunohistoquímica , Melanoma/genética , Melanoma/mortalidad , Melanoma/secundario , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Factor de Transcripción Asociado a Microftalmía/metabolismo , Mutación , Factores del Dominio POU/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , ARN Interferente Pequeño , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/secundario , Melanoma Cutáneo Maligno
9.
Nat Commun ; 12(1): 1137, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602918

RESUMEN

Adjuvant systemic therapies are now routinely used following resection of stage III melanoma, however accurate prognostic information is needed to better stratify patients. We use differential expression analyses of primary tumours from 204 RNA-sequenced melanomas within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This signature strongly associated with progression-free (HR = 1.63, p = 5.24 × 10-5) and overall survival (HR = 1.61, p = 1.67 × 10-4), was validated in 175 regional lymph nodes metastasis as well as two externally ascertained datasets. The machine learning classification models trained using the signature genes performed significantly better in predicting metastases than models trained with clinical covariates (pAUROC = 7.03 × 10-4), or published prognostic signatures (pAUROC < 0.05). The signature score negatively correlated with measures of immune cell infiltration (ρ = -0.75, p < 2.2 × 10-16), with a higher score representing reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our expression signature identifies melanoma patients at higher risk of metastases and warrants further evaluation in adjuvant clinical trials.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Bases de Datos Genéticas , Humanos , Aprendizaje Automático , Análisis Multivariante , Estadificación de Neoplasias , Pronóstico , Supervivencia sin Progresión , Modelos de Riesgos Proporcionales , Reproducibilidad de los Resultados , Factores de Tiempo , Resultado del Tratamiento
10.
Cancers (Basel) ; 12(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198174

RESUMEN

Background: Human intratumoral T cell infiltrates can be defined by quantitative or qualitative features, such as their ability to recognize autologous tumor antigens. In this study, we reproduced the tumor-T cell interactions of individual patients to determine and compared the qualitative characteristics of intratumoral T cell infiltrates across multiple tumor types. Methods: We employed 187 pairs of unselected tumor-infiltrating lymphocytes (TILs) and autologous tumor cells from patients with melanoma, renal-, ovarian-cancer or sarcoma, and single-cell RNA sequencing data from a pooled cohort of 93 patients with melanoma or epithelial cancers. Measures of TIL quality including the proportion of tumor-reactive CD8+ and CD4+ TILs, and TIL response polyfunctionality were determined. Results: Tumor-specific CD8+ and CD4+ TIL responses were detected in over half of the patients in vitro, and greater CD8+ TIL responses were observed in melanoma, regardless of previous anti-PD-1 treatment, compared to renal cancer, ovarian cancer and sarcoma. The proportion of tumor-reactive CD4+ TILs was on average lower and the differences less pronounced across tumor types. Overall, the proportion of tumor-reactive TILs in vitro was remarkably low, implying a high fraction of TILs to be bystanders, and highly variable within the same tumor type. In situ analyses, based on eight single-cell RNA-sequencing datasets encompassing melanoma and five epithelial cancers types, corroborated the results obtained in vitro. Strikingly, no strong correlation between the proportion of CD8+ and CD4+ tumor-reactive TILs was detected, suggesting the accumulation of these responses in the tumor microenvironment to follow non-overlapping biological pathways. Additionally, no strong correlation between TIL responses and tumor mutational burden (TMB) in melanoma was observed, indicating that TMB was not a major driving force of response. No substantial differences in polyfunctionality across tumor types were observed. Conclusions: These analyses shed light on the functional features defining the quality of TIL infiltrates in cancer. A significant proportion of TILs across tumor types, especially non-melanoma, are bystander T cells. These results highlight the need to develop strategies focused on the tumor-reactive TIL subpopulation.

11.
Nat Commun ; 11(1): 3800, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32733040

RESUMEN

Frameshift insertion/deletions (fs-indels) are an infrequent but highly immunogenic mutation subtype. Although fs-indels are degraded through the nonsense-mediated decay (NMD) pathway, we hypothesise that some fs-indels escape degradation and elicit anti-tumor immune responses. Using allele-specific expression analysis, expressed fs-indels are enriched in genomic positions predicted to escape NMD, and associated with higher protein expression, consistent with degradation escape (NMD-escape). Across four independent melanoma cohorts, NMD-escape mutations are significantly associated with clinical-benefit to checkpoint inhibitor (CPI) therapy (Pmeta = 0.0039). NMD-escape mutations are additionally found to associate with clinical-benefit in the low-TMB setting. Furthermore, in an adoptive cell therapy treated melanoma cohort, NMD-escape mutation count is the most significant biomarker associated with clinical-benefit. Analysis of functional T cell reactivity screens from personalized vaccine studies shows direct evidence of fs-indel derived neoantigens eliciting immune response, particularly those with highly elongated neo open reading frames. NMD-escape fs-indels represent an attractive target for biomarker optimisation and immunotherapy design.


Asunto(s)
Melanoma/genética , Melanoma/inmunología , Degradación de ARNm Mediada por Codón sin Sentido/genética , Linfocitos T/inmunología , Escape del Tumor/genética , Traslado Adoptivo , Antígenos de Neoplasias/inmunología , Biomarcadores de Tumor/genética , Mutación del Sistema de Lectura/genética , Humanos , Mutación INDEL/genética , Inmunoterapia Adoptiva , Linfocitos T/trasplante , Secuenciación del Exoma
12.
Cancers (Basel) ; 12(3)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245160

RESUMEN

Checkpoint blockade therapies have changed the clinical management of metastatic melanoma patients considerably, showing survival benefits. Despite the clinical success, not all patients respond to treatment or they develop resistance. Although there are several treatment predictive biomarkers, understanding therapy resistance and the mechanisms of tumor immune evasion is crucial to increase the frequency of patients benefiting from treatment. The PTEN gene is thought to promote immune evasion and is frequently mutated in cancer and melanoma. Another feature of melanoma tumors that may affect the capacity of escaping T-cell recognition is melanoma cell dedifferentiation characterized by decreased expression of the microphtalmia-associated transcription factor (MITF) gene. In this study, we have explored the role of PTEN in prognosis, therapy response, and immune escape in the context of MITF expression using immunostaining and genomic data from a large cohort of metastatic melanoma. We confirmed in our cohort that PTEN alterations promote immune evasion highlighted by decreased frequency of T-cell infiltration in such tumors, resulting in a worse patient survival. More importantly, our results suggest that dedifferentiated PTEN negative melanoma tumors have poor patient outcome, no T-cell infiltration, and transcriptional properties rendering them resistant to targeted- and immuno-therapy.

15.
Mol Oncol ; 14(5): 933-950, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32147909

RESUMEN

The presence of immune cells in the tumor microenvironment has been associated with response to immunotherapies across several cancer types, including melanoma. Despite its therapeutic relevance, characterization of the melanoma immune microenvironments remains insufficiently explored. To distinguish the immune microenvironment in a cohort of 180 metastatic melanoma clinical specimens, we developed a method using promoter CpG methylation of immune cell type-specific genes extracted from genome-wide methylation arrays. Unsupervised clustering identified three immune methylation clusters with varying levels of immune CpG methylation that are related to patient survival. Matching protein and gene expression data further corroborated the identified epigenetic characterization. Exploration of the possible immune exclusion mechanisms at play revealed likely dependency on MITF protein level and PTEN loss-of-function events for melanomas unresponsive to immunotherapies (immune-low). To understand whether melanoma tumors resemble other solid tumors in terms of immune methylation characteristics, we explored 15 different solid tumor cohorts from TCGA. Low-dimensional projection based on immune cell type-specific methylation revealed grouping of the solid tumors in line with melanoma immune methylation clusters rather than tumor types. Association of survival outcome with immune cell type-specific methylation differed across tumor and cell types. However, in melanomas immune cell type-specific methylation was associated with inferior patient survival. Exploration of the immune methylation patterns in a pan-cancer context suggested that specific immune microenvironments might occur across the cancer spectrum. Together, our findings underscore the existence of diverse immune microenvironments, which may be informative for future immunotherapeutic applications.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/inmunología , Linfocitos/citología , Melanoma/inmunología , Melanoma/metabolismo , Células Mieloides/citología , Neoplasias Cutáneas/metabolismo , Microambiente Tumoral/inmunología , Linfocitos B/citología , Linfocitos B/metabolismo , Carcinoma/genética , Carcinoma/inmunología , Carcinoma/metabolismo , Línea Celular Tumoral , Estudios de Cohortes , Islas de CpG , Metilación de ADN , Bases de Datos Genéticas , Células Dendríticas/citología , Células Dendríticas/metabolismo , Epigénesis Genética , Glioma/genética , Glioma/inmunología , Glioma/metabolismo , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Linfocitos/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Melanoma/genética , Melanoma/secundario , Mesotelioma/genética , Mesotelioma/inmunología , Mesotelioma/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Células Mieloides/metabolismo , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/inmunología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Regiones Promotoras Genéticas , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Linfocitos T/citología , Linfocitos T/metabolismo
16.
Nature ; 577(7791): 561-565, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942071

RESUMEN

Checkpoint blockade therapies that reactivate tumour-associated T cells can induce durable tumour control and result in the long-term survival of patients with advanced cancers1. Current predictive biomarkers for therapy response include high levels of intratumour immunological activity, a high tumour mutational burden and specific characteristics of the gut microbiota2,3. Although the role of T cells in antitumour responses has thoroughly been studied, other immune cells remain insufficiently explored. Here we use clinical samples of metastatic melanomas to investigate the role of B cells in antitumour responses, and find that the co-occurrence of tumour-associated CD8+ T cells and CD20+ B cells is associated with improved survival, independently of other clinical variables. Immunofluorescence staining of CXCR5 and CXCL13 in combination with CD20 reveals the formation of tertiary lymphoid structures in these CD8+CD20+ tumours. We derived a gene signature associated with tertiary lymphoid structures, which predicted clinical outcomes in cohorts of patients treated with immune checkpoint blockade. Furthermore, B-cell-rich tumours were accompanied by increased levels of TCF7+ naive and/or memory T cells. This was corroborated by digital spatial-profiling data, in which T cells in tumours without tertiary lymphoid structures had a dysfunctional molecular phenotype. Our results indicate that tertiary lymphoid structures have a key role in the immune microenvironment in melanoma, by conferring distinct T cell phenotypes. Therapeutic strategies to induce the formation of tertiary lymphoid structures should be explored to improve responses to cancer immunotherapy.


Asunto(s)
Melanoma/inmunología , Melanoma/terapia , Estructuras Linfoides Terciarias/inmunología , Antígenos CD20/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Quimiocina CXCL13/metabolismo , Humanos , Memoria Inmunológica/inmunología , Melanoma/genética , Melanoma/patología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Fenotipo , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteómica , RNA-Seq , Receptores CXCR5/metabolismo , Análisis de la Célula Individual , Tasa de Supervivencia , Factor 1 de Transcripción de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Estructuras Linfoides Terciarias/genética , Resultado del Tratamiento , Microambiente Tumoral/inmunología
17.
Brief Bioinform ; 21(2): 729-740, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-30721923

RESUMEN

The development of multigene classifiers for cancer prognosis, treatment prediction, molecular subtypes or clinicopathological groups has been a cornerstone in transcriptomic analyses of human malignancies for nearly two decades. However, many reported classifiers are critically limited by different preprocessing needs like normalization and data centering. In response, a new breed of classifiers, single sample predictors (SSPs), has emerged. SSPs classify samples in an N-of-1 fashion, relying on, e.g. gene rules comparing expression values within a sample. To date, several methods have been reported, but there is a lack of head-to-head performance comparison for typical cancer classification problems, representing an unmet methodological need in cancer bioinformatics. To resolve this need, we performed an evaluation of two SSPs [k-top-scoring pair classifier (kTSP) and absolute intrinsic molecular subtyping (AIMS)] for two case examples of different magnitude of difficulty in non-small cell lung cancer: gene expression-based classification of (i) tumor histology and (ii) molecular subtype. Through the analysis of ~2000 lung cancer samples for each case example (n = 1918 and n = 2106, respectively), we compared the performance of the methods for different sample compositions, training data set sizes, gene expression platforms and gene rule selections. Three main conclusions are drawn from the comparisons: both methods are platform independent, they select largely overlapping gene rules associated with actual underlying tumor biology and, for large training data sets, they behave interchangeably performance-wise. While SSPs like AIMS and kTSP offer new possibilities to move gene expression signatures/predictors closer to a clinical context, they are still importantly limited by the difficultness of the classification problem at hand.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/clasificación , Carcinoma de Pulmón de Células no Pequeñas/genética , Estudios de Casos y Controles , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias Pulmonares/clasificación , Neoplasias Pulmonares/genética
18.
J Med Genet ; 57(5): 316-321, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291219

RESUMEN

BACKGROUND: Inherited CDKN2A mutation is a strong risk factor for cutaneous melanoma. Moreover, carriers have been found to have poor melanoma-specific survival. In this study, responses to novel immunotherapy agents in CDKN2A mutation carriers with metastatic melanoma were evaluated. METHODS: CDKN2A mutation carriers that have developed metastatic melanoma and undergone immunotherapy treatments were identified among carriers enrolled in follow-up studies for familial melanoma. The carriers' responses were compared with responses reported in phase III clinical trials for CTLA-4 and PD-1 inhibitors. From publicly available data sets, melanomas with somatic CDKN2A mutation were analysed for association with tumour mutational load. RESULTS: Eleven of 19 carriers (58%) responded to the therapy, a significantly higher frequency than observed in clinical trials (p=0.03, binomial test against an expected rate of 37%). Further, 6 of the 19 carriers (32%) had complete response, a significantly higher frequency than observed in clinical trials (p=0.01, binomial test against an expected rate of 7%). In 118 melanomas with somatic CDKN2A mutations, significantly higher total numbers of mutations were observed compared with 761 melanomas without CDKN2A mutation (Wilcoxon test, p<0.001). CONCLUSION: Patients with CDKN2A mutated melanoma may have improved immunotherapy responses due to increased tumour mutational load, resulting in more neoantigens and stronger antitumorous immune responses.


Asunto(s)
Antígeno CTLA-4/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Melanoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/genética , Adulto , Anciano , Antígeno CTLA-4/antagonistas & inhibidores , Ensayos Clínicos como Asunto , Femenino , Mutación de Línea Germinal/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunoterapia/efectos adversos , Ipilimumab/administración & dosificación , Ipilimumab/efectos adversos , Masculino , Melanoma/genética , Melanoma/patología , Persona de Mediana Edad , Metástasis de la Neoplasia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores
19.
Pigment Cell Melanoma Res ; 33(3): 480-489, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31811783

RESUMEN

Chronic sun-damaged (CSD) melanoma represents 10%-20% of cutaneous melanomas and is characterized by infrequent BRAF V600E mutations and high mutational load. However, the order of genetic events or the extent of intra-tumor heterogeneity (ITH) in CSDhigh melanoma is still unknown. Ultra-deep targeted sequencing of 40 cancer-associated genes was performed in 72 in situ or invasive CMM, including 23 CSDhigh cases. In addition, we performed whole exome and RNA sequencing on multiple regions of primary tumor and multiple in-transit metastases from one CSDhigh melanoma patient. We found no significant difference in mutation frequency in melanoma-related genes or in mutational load between in situ and invasive CSDhigh lesions, while this difference was observed in CSDlow lesions. In addition, increased frequency of BRAF V600K, NF1, and TP53 mutations (p < .01, Fisher's exact test) was found in CSDhigh melanomas. Sequencing of multiple specimens from one CSDhigh patient revealed strikingly limited ITH with >95% shared mutations. Our results provide evidence that CSDhigh and CSDlow melanomas are distinct molecular entities that progress via different genetic routes.


Asunto(s)
Heterogeneidad Genética , Melanoma/genética , Luz Solar/efectos adversos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Enfermedad Crónica , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Melanoma/patología , Persona de Mediana Edad , Mutación/genética , Invasividad Neoplásica , Oncogenes , Transcripción Genética , Adulto Joven
20.
Clin Cancer Res ; 25(24): 7424-7435, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31515461

RESUMEN

PURPOSE: Previously identified transcriptomic signatures have been based on primary and metastatic melanomas with relatively few American Joint Committee on Cancer (AJCC) stage I tumors, given difficulties in sampling small tumors. The advent of adjuvant therapies has highlighted the need for better prognostic and predictive biomarkers, especially for AJCC stage I and stage II disease. EXPERIMENTAL DESIGN: A total of 687 primary melanoma transcriptomes were generated from the Leeds Melanoma Cohort (LMC). The prognostic value of existing signatures across all the AJCC stages was tested. Unsupervised clustering was performed, and the prognostic value of the resultant signature was compared with that of sentinel node biopsy (SNB) and tested as a biomarker in three published immunotherapy datasets. RESULTS: Previous Lund and The Cancer Genome Atlas signatures predicted outcome in the LMC dataset (P = 10-8 to 10-4) but showed a significant interaction with AJCC stage (P = 0.04) and did not predict outcome in stage I tumors (P = 0.3-0.7). Consensus-based classification of the LMC dataset identified six classes that predicted outcome, notably in stage I disease. LMC class was a similar indicator of prognosis when compared with SNB, and it added prognostic value to the genes reported by Gerami and colleagues. One particular LMC class consistently predicted poor outcome in patients receiving immunotherapy in two of three tested datasets. Biological characterization of this class revealed high JUN and AXL expression and evidence of epithelial-to-mesenchymal transition. CONCLUSIONS: A transcriptomic signature of primary melanoma was identified with prognostic value, including in stage I melanoma and in patients undergoing immunotherapy.


Asunto(s)
Biomarcadores de Tumor/genética , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Inmunoterapia/mortalidad , Melanoma/patología , Neoplasias Cutáneas/patología , Transcriptoma , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Melanoma/genética , Melanoma/terapia , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Tasa de Supervivencia , Resultado del Tratamiento , Adulto Joven , Melanoma Cutáneo Maligno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA