Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Org Lett ; 25(50): 9053-9057, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38085822

RESUMEN

A palladium-catalyzed domino reaction of alkene-tethered oxime esters is reported. This transformation uses an air-stable palladium precatalyst that initiates a Narasaka-Heck reaction, that is interrupted with a Pd(II)-promoted cyclization. Through this methodology, a novel class of unsymmetrical alkyl-linked bis-heterocycles were synthesized in yields up to 99%. The reaction is scalable up to 1.0 mmol, with simplified purification steps. This transformation expands the scope of accessible bis-heterocycles available through Narasaka-Heck reactions beyond C-H activation and direct anionic capture termination steps.

2.
J Am Chem Soc ; 145(49): 26623-26631, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38039391

RESUMEN

A palladium-catalyzed domino C-N coupling/Cacchi reaction is reported. Design of photoluminescent bis-heterocycles, aided by density functional theory calculations, was performed with synthetic yields up to 98%. The photophysical properties of the products accessed via this strategy were part of a comprehensive study that led to broad emission spectra and quantum yields of up to 0.59. Mechanistic experiments confirmed bromoalkynes as competent intermediates, and a density functional theory investigation suggests a pathway involving initial oxidative addition into the cis C-Br bond of the gem-dihaloolefin.

3.
Org Lett ; 25(47): 8520-8525, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37966421

RESUMEN

We report an enantioselective copper-catalyzed Kinugasa/aldol domino reaction. This strategy enables access to a range of spirocyclic ß-lactam pyrrolidinones in a stereoselective fashion. Under mild reaction conditions, prochiral alkyne-tethered ketones are coupled with nitrones to enable the facile construction of two spirofused ring systems containing three continuous stereocenters with excellent enantioselectivity. Also disclosed are post-transformation modifications demonstrating potential downstream functionalization of the spirocyclic molecules.

4.
J Med Chem ; 66(15): 10273-10288, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499118

RESUMEN

Histone deacetylase 6 (HDAC6) inhibition is an attractive strategy for treating numerous cancers, and HDAC6 catalytic inhibitors are currently in clinical trials. The HDAC6 zinc-finger ubiquitin-binding domain (UBD) binds free C-terminal diglycine motifs of unanchored ubiquitin polymer chains and protein aggregates, playing an important role in autophagy and aggresome assembly. However, targeting this domain with small molecule antagonists remains an underdeveloped avenue of HDAC6-focused drug discovery. We report SGC-UBD253 (25), a chemical probe potently targeting HDAC6-UBD in vitro with selectivity over nine other UBDs, except for weak USP16 binding. In cells, 25 is an effective antagonist of HDAC6-UBD at 1 µM, with marked proteome-wide selectivity. We identified SGC-UBD253N (32), a methylated derivative of 25 that is 300-fold less active, serving as a negative control. Together, 25 and 32 could enable further exploration of the biological function of the HDAC6-UBD and investigation of the therapeutic potential of targeting this domain.


Asunto(s)
Ubiquitina , Ubiquitinas , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas/farmacología , Unión Proteica , Ubiquitina/metabolismo , Dedos de Zinc
5.
Org Lett ; 25(28): 5361-5365, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37436188

RESUMEN

The palladium-catalyzed synthesis of bis-heterocyclic spirocycles containing both pyrroline and indoline motifs is reported. Di-tert-butyldiaziridinone is used to functionalize palladacycles generated in situ via domino Narasaka-Heck/C-H activation reactions. The reaction is readily scalable, and the spirocyclic products can undergo deprotection, reduction, and (3 + 2) cycloadditions, highlighting their synthetic utility. Additionally, kinetic isotope effect experiments support a turnover-limiting C-H functionalization step in the catalytic cycle.

6.
J Am Chem Soc ; 145(23): 12518-12531, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37265114

RESUMEN

ß-Lapachone is an ortho-naphthoquinone natural product with significant antiproliferative activity but suffers from adverse systemic toxicity. The use of photoremovable protecting groups to covalently inactivate a substrate and then enable controllable release with light in a spatiotemporal manner is an attractive prodrug strategy to limit toxicity. However, visible light-activatable photocages are nearly exclusively enabled by linkages to nucleophilic functional sites such as alcohols, amines, thiols, phosphates, and sulfonates. Herein, we report covalent inactivation of the electrophilic quinone moiety of ß-lapachone via a C(sp3)-C(sp3) bond to a coumarin photocage. In contrast to ß-lapachone, the designed prodrug remained intact in human whole blood and did not induce methemoglobinemia in the dark. Under light activation, the C-C bond cleaves to release the active quinone, recovering its biological activity when evaluated against the enzyme NQO1 and human cancer cells. Investigations into this report of a C(sp3)-C(sp3) photoinduced bond cleavage suggest a nontraditional, radical-based mechanism of release beginning with an initial charge-transfer excited state. Additionally, caging and release of the isomeric para-quinone, α-lapachone, are demonstrated. As such, we describe a photocaging strategy for the pair of quinones and report a unique light-induced cleavage of a C-C bond. We envision that this photocage strategy can be extended to quinones beyond ß- and α-lapachone, thus expanding the chemical toolbox of photocaged compounds.


Asunto(s)
Fotoquímica , Espectroscopía de Resonancia por Spin del Electrón , Fotoquímica/métodos , Humanos , Modelos Moleculares , Línea Celular Tumoral
7.
Chem Sci ; 14(21): 5650-5655, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37265736

RESUMEN

A palladium-catalyzed spirocyclization reaction is reported, which is proposed to arise via insertion of an oxabicycle into a palladacycle, formed from carbocyclization and a C-H functionalization sequence. Mechanistic studies suggest the insertion is diastereoselective and a post-catalytic retro-Diels-Alder step furnishes an alkene, wherein the oxibicycle has served as an acetylene surrogate. Aryl iodides and carbamoyl chlorides were compatible as starting materials under the same reaction conditions, enabling the convergent and complementary synthesis of spirooxindoles, as well as other azacycles. These spirooxindoles allowed further transformations that were previously unaccessible.

8.
J Am Chem Soc ; 145(20): 11012-11018, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37172320

RESUMEN

A BF3-catalyzed atom-economical fluorocarbamoylation reaction of alkyne-tethered carbamoyl fluorides is reported. The catalyst acts as both a fluoride source and Lewis acid activator, thereby enabling the formal insertion of alkynes into strong C-F bonds through a halide recycling mechanism. The developed method provides access to 3-(fluoromethylene) oxindoles and γ-lactams with excellent stereoselectivity, including fluorinated derivatives of known protein kinase inhibitors. Experimental and computational studies support a stepwise mechanism for the fluorocarbamoylation reaction involving a turnover-limiting cyclization step, followed by internal fluoride transfer from a BF3-coordinated carbamoyl adduct. For methylene oxindoles, a thermodynamically driven Z-E isomerization is facilitated by a transition state with aromatic character. In contrast, this aromatic stabilization is not relevant for γ-lactams, which results in a higher barrier for isomerization and the exclusive formation of the Z-isomer.

9.
Nature ; 618(7963): 102-109, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225985

RESUMEN

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Asunto(s)
Antinematodos , Tylenchoidea , Animales , Humanos , Antinematodos/química , Antinematodos/metabolismo , Antinematodos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efectos de los fármacos , Tylenchoidea/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Tiazoles/farmacología , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/parasitología , Enfermedades de las Plantas , Especificidad de la Especie , Especificidad por Sustrato
10.
Adv Sci (Weinh) ; 10(13): e2300311, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36905240

RESUMEN

Colloidal drug aggregates enable the design of drug-rich nanoparticles; however, the efficacy of stabilized colloidal drug aggregates is limited by entrapment in the endo-lysosomal pathway. Although ionizable drugs are used to elicit lysosomal escape, this approach is hindered by toxicity associated with phospholipidosis. It is hypothesized that tuning the pKa of the drug would enable endosomal disruption while avoiding phospholipidosis and minimizing toxicity. To test this idea, 12 analogs of the nonionizable colloidal drug fulvestrant are synthesized with ionizable groups to enable pH-dependent endosomal disruption while maintaining bioactivity. Lipid-stabilized fulvestrant analog colloids are endocytosed by cancer cells, and the pKa of these ionizable colloids influenced the mechanism of endosomal and lysosomal disruption. Four fulvestrant analogs-those with pKa values between 5.1 and 5.7-disrupted endo-lysosomes without measurable phospholipidosis. Thus, by manipulating the pKa of colloid-forming drugs, a tunable and generalizable strategy for endosomal disruption is established.


Asunto(s)
Coloides , Endosomas , Fulvestrant/metabolismo , Endosomas/metabolismo , Lisosomas
11.
Nat Commun ; 14(1): 1816, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002199

RESUMEN

Nematode parasites of humans and livestock pose a significant burden to human health, economic development, and food security. Anthelmintic drug resistance is widespread among parasites of livestock and many nematode parasites of humans lack effective treatments. Here, we present a nitrophenyl-piperazine scaffold that induces motor defects rapidly in the model nematode Caenorhabditis elegans. We call this scaffold Nemacol and show that it inhibits the vesicular acetylcholine transporter (VAChT), a target recognized by commercial animal and crop health groups as a viable anthelmintic target. We demonstrate that it is possible to create Nemacol analogs that maintain potent in vivo activity whilst lowering their affinity to the mammalian VAChT 10-fold. We also show that Nemacol enhances the ability of the anthelmintic Ivermectin to paralyze C. elegans and the ruminant nematode parasite Haemonchus contortus. Hence, Nemacol represents a promising new anthelmintic scaffold that acts through a validated anthelmintic target.


Asunto(s)
Antihelmínticos , Nematodos , Animales , Humanos , Caenorhabditis elegans , Proteínas de Transporte Vesicular de Acetilcolina , Antihelmínticos/farmacología , Ivermectina/farmacología , Resistencia a Medicamentos , Mamíferos
12.
J Am Chem Soc ; 144(45): 20554-20560, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36306244

RESUMEN

A Pd(0)/blue light catalyzed carboiodination reaction is reported. A simple, air-stable catalytic system, utilizing [Pd(allyl)Cl]2 and DPEPhos, generated a variety of iodinated hetero- and carbocycles including oxindoles, dihydrobenzofurans, indolines, a chromane, and a tetrahydronaphthalene. This protocol was tolerant of sensitive functional groups including free carboxylic acids, phenols, and anilines, as well as pyridines, while delivering products in up to 94% yield. Support for a reversible C-I bond formation via a single electron mechanism was obtained using a deuterium labeled substrate and a stoichiometric neopentylpalladium species.


Asunto(s)
Ácidos Carboxílicos , Luz , Catálisis
13.
Commun Biol ; 5(1): 865, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002479

RESUMEN

Nematode parasites of humans, livestock and crops dramatically impact human health and welfare. Alarmingly, parasitic nematodes of animals have rapidly evolved resistance to anthelmintic drugs, and traditional nematicides that protect crops are facing increasing restrictions because of poor phylogenetic selectivity. Here, we exploit multiple motor outputs of the model nematode C. elegans towards nematicide discovery. This work yielded multiple compounds that selectively kill and/or immobilize diverse nematode parasites. We focus on one compound that induces violent convulsions and paralysis that we call nementin. We find that nementin stimulates neuronal dense core vesicle release, which in turn enhances cholinergic signaling. Consequently, nementin synergistically enhances the potency of widely-used non-selective acetylcholinesterase (AChE) inhibitors, but in a nematode-selective manner. Nementin therefore has the potential to reduce the environmental impact of toxic AChE inhibitors that are used to control nematode infections and infestations.


Asunto(s)
Caenorhabditis elegans , Nematodos , Acetilcolinesterasa , Animales , Antinematodos/farmacología , Humanos , Neurotransmisores , Filogenia
14.
Nature ; 606(7916): 859, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35739264
15.
Org Lett ; 24(21): 3823-3827, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35604037

RESUMEN

The diastereoselective synthesis of sulfonylated indolines is reported. A palladium-catalyzed dearomative sulfination of (aza)indole-tethered aryl iodides generates reactive benzylic sulfinates. These intermediates react with electrophiles in a one-pot, two-step process to generate sulfonylated products in good yields and excellent diastereoselectivity. This three-component sequence demonstrates good scalability and can be applied toward the synthesis of sulfonamides. Additionally, further derivatizations of aryl iodide containing products furnish spiro- and alkynylated indoline products.


Asunto(s)
Paladio , Sulfonamidas , Catálisis , Yoduros
16.
Nat Chem ; 14(4): 398-406, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35301473

RESUMEN

A widely appreciated principle is that all reactions are fundamentally reversible. Observing reversible transition metal-catalysed reactions, particularly those that include the cleavage of C-C bonds, is more challenging. The development of palladium- and nickel-catalysed carboiodination reactions afforded access to the cis and trans diastereomers of the iodo-dihydroisoquinolone products. Using these substrates, an extensive study investigating the reversibility of C-C bond formation using a simple palladium catalyst was undertaken. Herein we report a comprehensive investigation of reversible C-C bond formation using palladium catalysis employing diastereomeric neopentyl iodides as the starting point. It was shown that both diastereomers could be converted to a common product under identical catalytic conditions. A combination of experimental and computational studies were used to probe the operative mechanism. A variety of concepts key to understanding the process of reversible C-C bond formations were investigated, including the effect of electronic and steric parameters on the C-C bond-cleavage step.

17.
Angew Chem Int Ed Engl ; 61(1): e202112288, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34739741

RESUMEN

A palladium-catalyzed strategy is presented to synthesize unsymmetrically linked heterocycles within stereoselective tetrasubstituted olefins. This reaction is proposed to occur via a vinyl-PdII intermediate capable of initiating the cyclization of various alkyne-tethered nucleophiles. Products are formed in up to 96 % yield and excellent stereoselectivities are obtained using low catalyst loadings. This transformation was scalable up to 1 mmol and mechanistic studies suggest a syn-carbopalladation of the carbamoyl chloride followed by PdII -catalyzed cyclization of alkyne-tethered nucleophiles.

18.
Org Lett ; 24(1): 95-99, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34908419

RESUMEN

A simple and modular approach toward bis-heterocyclic spirocycles using palladium catalysis is reported. The enclosed methodology leverages a Mizoroki-Heck-type reaction to generate a neopentylpalladium species. This species can undergo intramolecular C-H activation on a wide array of (hetero)aryl C-H bonds, generating a variety of [4.4] and [4.5] bis-heterocyclic spirocycles in up to 95% yield. A diverse range of bis-heterocyclic spirocycles were possible, with 24 examples and 18 different combinations of heterocycles were synthesized. Biologically relevant aza-heterocycles such as purine, pyrazole, (benz)imidazole, (aza)indole, and pyridine were readily incorporated into the spirocyclic core. The reaction was readily scalable to 1 mmol using a lower catalyst loading and number of base equivalents, and the product was purified without the use flash column chromatography.

19.
Angew Chem Int Ed Engl ; 61(8): e202116171, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34939302

RESUMEN

The dearomatization of 2-naphthols represents a simple method for the construction of complex 3D structures from simple planar starting materials. We describe a cyclopropanation of 2-naphthols that proceeds via cyclopropene ring-opening using rhodium and acid catalysis under mild conditions. The vinyl cyclopropane molecules were formed with high chemoselectivity and scalability, which could be further functionalized at different sites. Both computational and experimental evidence were used to elucidate the reaction mechanism.

20.
Org Lett ; 23(19): 7540-7544, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34541848

RESUMEN

The reaction of alkene-tethered trifluoroacetimidoyl chlorides with trialkyl phosphites furnishes 1-amino-2,2,2-trifluoroalkylphosphonates. The products were generated in moderate to good yields, and the scalability of this process was showcased. Partial hydrolysis of the phosphonate moiety was achieved. The cyclization is proposed to occur via formation of an imidoyl phosphonate intermediate that becomes susceptible to nucleophilic attack at nitrogen through the strong electron-withdrawing groups at the imidoyl carbon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA