RESUMEN
Phthalate monoesters have been identified as endocrine disruptors in a variety of models, yet understanding of their exact mechanisms of action and molecular targets in cells remains incomplete. Here, we set to determine whether epidemiologically relevant mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) can affect biological processes by altering cell plasma membrane fluidity or formation of cell-cell contacts. As a model system, we chose endometrial stromal cell lines, one of which was previously used in a transcriptomic study with MEHHP or MEHHP-containing mixtures. A short-term exposure (1â¯h) of membrane preparations to endocrine disruptors was sufficient to induce changes in membrane fluidity/rigidity, whereas different mixtures showed different effects at various depths of the bilayer. A longer exposure (96â¯h) affected the ability of cells to form spheroids and highlighted issues with membrane integrity in loosely assembled spheroids. Finally, in spheroids assembled from T-HESC cells, MEHHP interfered with the formation of cell-cell contacts as indicated by the immunostaining of zonula occludens 1 protein. Overall, this study emphasized the need to consider plasma membrane, membrane-bound organelles, and secretory vesicles as possible biological targets of endocrine disruptors and offered an explanation for a multitude of endocrine disruptor roles documented earlier.
RESUMEN
Phthalates are endocrine disrupting chemicals (EDCs) found in common consumer products such as soft plastics and cosmetics. Although the knowledge regarding the adverse effects of phthalates on female fertility are accumulating, information on the hormone sensitive endometrium is still scarce. Here, we studied the effects of phthalates on endometrial cell proliferation and gene expression. Human endometrial primary epithelial and stromal cells were isolated from healthy fertile-aged women (n=3), and were compared to endometrial cell lines T-HESC and Ishikawa. Three different epidemiologically relevant phthalate mixtures were used, defined by urine samples in the Midlife Women Health Study (MWHS) cohort. Mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was used as a single phthalate control. Cells were harvested for proliferation testing and transcriptomic analyses after 24â¯h exposure. Even though all cell models responded differently to the phthalate exposures, many overlapping differentially expressed genes (DEGs, FDR<0.1), related to cell adhesion, cytoskeleton and mitochondria were found in all cell types. The qPCR analysis confirmed that MEHHP significantly affected cell adhesion gene vinculin (VCL) and NADH:ubiquinone oxidoreductase subunit B7 (NDUFB7), important for oxidative phosphorylation. Benchmark dose modelling showed that MEHHP had significant concentration-dependent effects on cytoskeleton gene actin-beta (ACTB). In conclusion, short 24â¯h phthalate exposures significantly altered gene expression cell-specifically in human endometrial cells, with six shared DEGs. The mixture effects were similar to those of MEHHP, suggesting MEHHP could be the main driver in the mixture. Impact of phthalate exposures on endometrial functions including receptivity should be addressed.
Asunto(s)
Proliferación Celular , Citoesqueleto , Disruptores Endocrinos , Endometrio , Mitocondrias , Ácidos Ftálicos , Humanos , Femenino , Endometrio/efectos de los fármacos , Endometrio/citología , Endometrio/metabolismo , Citoesqueleto/efectos de los fármacos , Ácidos Ftálicos/toxicidad , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Adulto , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Línea Celular , Células Cultivadas , Contaminantes Ambientales/toxicidad , Expresión Génica/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Persona de Mediana EdadRESUMEN
The choice of targeted therapies for treatment of glioblastoma patients is currently limited, and most glioblastoma patients die from the disease recurrence. Thus, systematic studies in simplified model systems are required to pinpoint the choice of targets for further exploration in clinical settings. Here, we report screening of 5 compounds targeting epigenetic writers or erasers and 6 compounds targeting cell cycle-regulating protein kinases against 3 glioblastoma cell lines following incubation under normoxic or hypoxic conditions. The viability/proliferation assay indicated that PRMT5 inhibitor onametostat was endowed with high potency under both normoxic and hypoxic conditions in cell lines that are strongly MGMT-positive (T98-G), weakly MGMT-positive (U-251 MG), or MGMT-negative (U-87 MG). In U-251 MG and U-87 MG cells, onametostat also affected the spheroid formation at concentrations lower than the currently used chemotherapeutic drug lomustine. In T98-G cell line, treatment with onametostat led to dramatic changes in the transcriptome profile by inducing the cell cycle arrest, suppressing RNA splicing, and down-regulating several major glioblastoma cell survival pathways. Further validation by immunostaining in three cell lines confirmed that onametostat affects cell cycle and causes reduction in nucleolar protein levels. In this way, inhibition of epigenetic targets might represent a viable strategy for glioblastoma treatment even in the case of decreased chemo- and radiation sensitivity, although further studies in clinically more relevant models are required.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia/genética , Ciclo Celular , División Celular , Epigénesis Genética , Neoplasias Encefálicas/genética , Proliferación Celular , Proteína-Arginina N-Metiltransferasas/metabolismoRESUMEN
Immune checkpoint inhibitors are increasingly used in combination with chemotherapy for the treatment of non-small cell lung cancer, yet the success of combination therapies is relatively limited. Thus, more detailed insight regarding the tumor molecular markers that may affect the responsiveness of patients to therapy is required. Here, we set out to explore the proteome of two lung adenocarcinoma cell lines (HCC-44 and A549) treated with cisplatin, pemetrexed, durvalumab, and the corresponding mixtures to establish the differences in post-treatment protein expression that can serve as markers of chemosensitivity or resistance. The mass spectrometry study showed that the addition of durvalumab to the treatment mixture resulted in cell line- and chemotherapeutic agent-dependent responses and confirmed the previously reported involvement of DNA repair machinery in the potentiation of the chemotherapy effect. Further validation using immunofluorescence also indicated that the potentiating effect of durvalumab in the case of cisplatin treatment was dependent on the tumor suppressor RB-1 in the PD-L1 weakly positive cells. In addition, we identified aldehyde dehydrogenase ALDH1A3 as the general putative resistance marker. Further studies in patient biopsy samples will be required to confirm the clinical significance of these findings.
RESUMEN
Chemical health risk assessment is based on single chemicals, but humans and wildlife are exposed to extensive mixtures of industrial substances and pharmaceuticals. Such exposures are life-long and correlate with multiple morbidities, including infertility. How combinatorial effects of chemicals should be handled in hazard characterization and risk assessment are open questions. Further, test systems are missing for several relevant health outcomes including reproductive health and fertility in women. Here, our aim was to screen multiple ovarian cell models for phthalate induced effects to identify biomarkers of exposure. We used an epidemiological cohort study to define different phthalate mixtures for in vitro testing. The mixtures were then tested in five cell models representing ovarian granulosa or stromal cells, namely COV434, KGN, primary human granulosa cells, primary mouse granulosa cells, and primary human ovarian stromal cells. Exposures at epidemiologically relevant levels did not markedly elicit cytotoxicity or affect steroidogenesis in short 24-hour exposure. However, significant effects on gene expression were identified by RNA-sequencing. Altogether, the exposures changed the expression of 124 genes on the average (9-479 genes per exposure) in human cell models, without obvious concentration or mixture-dependent effects on gene numbers. The mixtures stimulated distinct changes in different cell models. Despite differences, our analyses suggest commonalities in responses towards phthalates, which forms a starting point for follow-up studies on identification and validation of candidate biomarkers that could be developed to novel assays for regulatory testing or even into clinical tests.
Asunto(s)
Disruptores Endocrinos , Ácidos Ftálicos , Animales , Ratones , Humanos , Femenino , Ovario , Estudios de Cohortes , Ácidos Ftálicos/toxicidad , Fertilidad , Disruptores Endocrinos/toxicidadRESUMEN
Immunotherapy using immune checkpoint inhibitors (ICIs) has significantly improved survival in patients with non-small cell lung cancer (NSCLC), and ICIs are increasingly used in combination with cytotoxic treatments, such as chemotherapy. Although combined treatments are more effective, not all patients respond to the therapy; therefore, a detailed understanding of the effect of treatment combinations at the tumour level is needed. The present study aimed to explore whether ICIs could affect the cytotoxic effects of chemotherapy on lung adenocarcinoma cell lines with different PD-L1 expression levels (high, HCC-44; low, A-549). Using the resazurin-based assay, the efficacy of seven chemotherapeutic agents (cisplatin, etoposide, gemcitabine, pemetrexed, vinorelbine, docetaxel and paclitaxel) was compared in the presence or absence of the individually chosen single doses of four ICIs (nivolumab, pembrolizumab, atezolizumab and durvalumab). The results revealed that different ICIs can exhibit either potentiating or depotentiating effects, depending on the chemotherapy agent or lung adenocarcinoma cell line used. Durvalumab was the most promising ICI, which potentiated most chemotherapy agents in both cell lines, especially in the case of high PD-L1 expression. By contrast, nivolumab, exhibited depotentiating trends in several combinations. The immunostaining of γH2AX in treated cells confirmed that the potentiation of the chemotherapeutic cytotoxicity by durvalumab was at least partially mediated via increased DNA damage; however, this effect was strongly dependent on the chemotherapy agent and cell line used. Our future studies aim to address the specific mechanisms underlying the observed ICI-induced potentiation or depotentiation.
RESUMEN
The conjugates of an adenosine mimetic and oligo-l-arginine or oligo-d-arginine (ARCs) were initially designed in our research group as inhibitors and photoluminescent probes targeting basophilic protein kinases. Here, we explored a panel of ARCs and their fluorescent derivatives in biochemical assays with members of the protein arginine methyltransferase (PRMT) family, focusing specifically on PRMT1. In the binding/displacement assay with detection of fluorescence anisotropy, we found that ARCs and arginine-rich peptides could serve as high-affinity ligands for PRMT1, whereas the equilibrium dissociation constant values depended dramatically on the number of arginine residues within the compounds. The fluorescently labeled probe ARC-1081 was displaced from its complex with PRMT1 by both S-adenosyl-l-methionine (SAM) and S-adenosyl-l-homocysteine (SAH), indicating binding of the adenosine mimetic of ARCs to the SAM/SAH-binding site within PRMT1. The ARCs that had previously shown microsecond-lifetime photoluminescence in complex with protein kinases did not feature such property in complex with PRMT1, demonstrating the selectivity of the time-resolved readout format. When tested against a panel of PRMT family members in single-dose inhibition experiments, a micromolar concentration of ARC-902 was required for the inhibition of PRMT1 and PRMT7. Overall, our results suggest that the compounds containing multiple arginine residues (including the well-known cell-penetrating peptides) are likely to inhibit PRMT and thus interfere with the epigenetic modification status in complex biological systems, which should be taken into consideration during interpretation of the experimental data.
Asunto(s)
Adenosina , Proteína-Arginina N-Metiltransferasas , Adenosina/química , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Colorantes Fluorescentes , Arginina/química , Arginina/metabolismo , Péptidos/química , Proteínas QuinasasRESUMEN
Bivalent ligands, including bisubstrate inhibitors, are conjugates of pharmacophores, which simultaneously target two binding sites of the biomolecule. Such structures offer attainable means for the development of compounds whose ability to bind to the biological target could be modulated by an external trigger. In the present work, two deactivatable bisubstrate inhibitors of basophilic protein kinases (PKs) were constructed by conjugating the pharmacophores via linkers that could be cleaved in response to external stimuli. The inhibitor ARC-2121 incorporated a photocleavable nitrodibenzofuran-comprising ß-amino acid residue in the structure of the linker. The pharmacophores of the other deactivatable inhibitor ARC-2194 were conjugated via reduction-cleavable disulfide bond. The disassembly of the inhibitors was monitored by HPLC-MS. The affinity and inhibitory potency of the inhibitors toward cAMP-dependent PK (PKAcα) were established by an equilibrium competitive displacement assay and enzyme activity assay, respectively. The deactivatable inhibitors possessed remarkably high 1-2-picomolar affinity toward PKAcα. Irradiation of ARC-2121 with 365 nm UV radiation led to reaction products possessing a 30-fold reduced affinity. The chemical reduction of ARC-2194 resulted in the decrease of affinity of over four orders of magnitude. The deactivatable inhibitors of PKs are valuable tools for the temporal inhibition or capture of these pharmacologically important enzymes.
Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Quinasas , Aminoácidos , Sitios de Unión , Disulfuros , Inhibidores Enzimáticos , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/metabolismoRESUMEN
Multiple studies have shown associations between exposure to endocrine disrupting chemicals (EDCs) and reduced fertility in women. However, little is known about the target organs of chemical disruption of female fertility. Here, we focus on the hormone-sensitive uterine lining, the endometrium, as a potential target. Decidualization is the morphological and functional change that endometrial stromal cells undergo to support endometrial receptivity, which is crucial for successful implantation, placentation, and pregnancy. We investigated the effect of nine selected EDCs on primary human endometrial stromal cell decidualization in vitro. The cells were exposed to a decidualization-inducing mixture in the presence or absence of 1 µM of nine different EDCs for nine days. Extent of decidualization was assessed by measuring the activity of cAMP dependent protein kinase, Rho-associated coiled-coil containing protein kinase, and protein kinase B in lysates using photoluminescent probes, and secretion of prolactin into the media by using ELISA. Decidualization-inducing mixture upregulated activity of protein kinases and prolactin secretion in cells derived from all women. Of the tested chemicals, dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB) and perfluorooctanesulfonic acid (PFOS) significantly reduced decidualization as judged by the kinase markers and prolactin secretion. In addition, bisphenol A (BPA) reduced prolactin secretion but did not significantly affect activity of the kinases. None of the EDCs was cytotoxic, based on the assessment of total protein content or activity of the viability marker casein kinase 2 in lysates. These results indicate that EDCs commonly present in the blood circulation of reproductive-aged women can reduce decidualization of human endometrial stromal cells in vitro. Future studies should focus on detailed hazard assessment to define possible risks of EDC exposure to endometrial dysfunction and implantation failure in women.
Asunto(s)
Decidua , Disruptores Endocrinos , Adulto , Células Cultivadas , Decidua/metabolismo , Disruptores Endocrinos/metabolismo , Femenino , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Embarazo , Prolactina/metabolismo , Células del Estroma/metabolismoRESUMEN
Recent clinical success with targeted covalent inhibitors points to new possibilities for development of protein kinase (PK)-targeted drugs by exploiting reactive cysteine residues in and around the ATP-binding site. However, more than 300 human PKs lack cysteine residues in the ATP-binding site. Here, we report the first covalent bisubstrate PK inhibitor whose electrophilic warhead reaches outside the ATP-binding site and reacts with a distant cysteine residue. A series of covalent inhibitors and their reversible counterparts were synthesized and characterized. The most potent reversible inhibitor possessed picomolar affinity and its cysteine-reactive counterpart revealed high value of kinact/KI ratio (6.2 × 107 M-1 s-1) for the reaction with the catalytic subunit of cAMP-dependent PK (PKAc). Under optimized conditions, fluorescent dye-labeled covalent inhibitors demonstrated PKA-selectivity in the cell lysate and reacted with several proteins inside live cells, including PKAc. The disclosed compounds serve as leads for targeting PKs possessing an analogously positioned cysteine residue.
Asunto(s)
Cisteína , Proteínas Quinasas , Adenosina Trifosfato , Sitios de Unión , Dominio Catalítico , Cisteína/química , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismoRESUMEN
Since 1991, the NAD(P)H-aided conversion of resazurin to fluorescent resorufin has been widely used to measure viability based on the metabolic activity in mammalian cell culture and primary cells. However, different research groups have used divergent assay protocols, scarcely reporting the systematic optimization of the assay. Here, we perform extensive studies to fine-tune the experimental protocols utilizing resazurin-based viability sensing. Specifically, we focus on (A) optimization of the assay dynamic range in individual cell lines for the correct measurement of cytostatic and cytotoxic properties of the compounds; (B) dependence of the dynamic range on the physical quantity detected (fluorescence intensity versus change of absorbance spectrum); (C) calibration of the assay for the correct interpretation of data measured in hypoxic conditions; and (D) possibilities for combining the resazurin assay with other methods including measurement of necrosis and apoptosis. We also demonstrate the enhanced precision and flexibility of the resazurin-based assay regarding the readout format and kinetic measurement mode as compared to the widely used analogous assay which utilizes tetrazolium dye MTT. The discussed assay optimization guidelines provide useful instructions for the beginners in the field and for the experienced scientists exploring new ways for measurement of cellular viability using resazurin.
Asunto(s)
Antineoplásicos , Xantenos , Animales , Antineoplásicos/farmacología , Bioensayo , Supervivencia Celular , Mamíferos/metabolismo , Oxazinas , Xantenos/metabolismo , Xantenos/farmacologíaRESUMEN
Despite the use of multimodal treatment combinations, the prognosis of glioblastoma (GB) is still poor. To prevent rapid tumor recurrence, targeted strategies for the treatment of GB are widely sought. Here, we compared the efficacy of focused modulation of a set of signaling pathways in two GB cell lines, U-251 MG and T98-G, using a panel of thirteen compounds targeting cell cycle progression, proliferation, epigenetic modifications, and DNA repair mechanism. In parallel, we tested combinations of these compounds with temozolomide and lomustine, the standard chemotherapy agents used in GB treatment. Two major trends were found: within individual compounds, the lowest IC50 values were exhibited by the Aurora kinase inhibitors, whereas in the case of mixtures, the addition of DNA methyltransferase 1 inhibitor azacytidine to lomustine proved the most beneficial. The efficacy of cell cycle-targeting compounds was further augmented by combination with radiation therapy using two different treatment regimes. The potency of azacytidine and lomustine mixtures was validated using a unique assay pipeline that utilizes automated imaging and machine learning-based data analysis algorithm for assessment of cell number and DNA damage extent. Based on our results, the combination of azacytidine and lomustine should be tested in GB clinical trials.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas , Ciclo Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma , Azacitidina/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Lomustina/farmacología , Temozolomida/farmacologíaRESUMEN
Hyperandrogenic women with PCOS show disrupted decidualization (DE) and placentation. Dihydrotestosterone (DHT) is reported to enhance DE in non-PCOS endometrial stromal cells (eSCCtrl); however, this has not been assessed in PCOS cells (eSCPCOS). Therefore, we studied the transcriptome profile of non-decidualized (non-DE) and DE eSCs from women with PCOS and Ctrl in response to short-term estradiol (E2) and/or progesterone (P4) exposure with/without (±) DHT. The non-DE eSCs were subjected to E2 ± DHT treatment, whereas the DE (0.5 mM 8-Br-cAMP, 96 h) eSCs were post-treated with E2 and P4 ± DHT, and RNA-sequenced. Validation was performed by immunofluorescence and immunohistochemistry. The results showed that, regardless of treatment, the PCOS and Ctrl samples clustered separately. The comparison of DE vs. non-DE eSCPCOS without DHT revealed PCOS-specific differentially expressed genes (DEGs) involved in mitochondrial function and progesterone signaling. When further adding DHT, we detected altered responses for lysophosphatidic acid (LPA), inflammation, and androgen signaling. Overall, the results highlight an underlying defect in decidualized eSCPCOS, present with or without DHT exposure, and possibly linked to the altered pregnancy outcomes. We also report novel factors which elucidate the mechanisms of endometrial dysfunction in PCOS.
Asunto(s)
Andrógenos/metabolismo , Endometrio/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Células del Estroma/metabolismo , Adulto , Dihidrotestosterona/metabolismo , Estradiol/metabolismo , Femenino , Humanos , Embarazo , Progesterona/metabolismo , Transducción de Señal/fisiologíaRESUMEN
Immunotherapy using immune checkpoint inhibitors has demonstrated durable responses and has significantly improved survival in patients with non-small cell lung cancer (NSCLC). Moreover, immunotherapy is increasingly used in combination with cytotoxic treatments such as chemotherapy and radiotherapy. Although the combined treatments are more effective, the underling mechanisms that lead to higher antitumor activity are not fully understood. Therefore, the aim of the current retrospective study was to determine the relationship between expression of immune checkpoints [programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1)] and the enzyme DNA-dependent protein kinase (DNA-PK), which is part of a key pathway involved in the repair of cytotoxic cancer therapy induced damage. Surgically excised NSCLC tissues (n=121) were histologically examined for overall extent of inflammation (score 0-3). Expression levels of PD-1 (number of PD-1 positive cells), PD-L1 [tumor proportion score (TPS); %] and DNA-PK (proportion of DNA-PK positive tumor cells; %) were determined using immunohistochemistry. Expressions of these markers were compared in different clinicopathological subgroups and later used for nonparametric Spearman correlation analysis to determine associations. In patients with NSCLC, PD-1 was significantly expressed in males (P=0.030) and in patients with no or trivial inflammation scores (P=0.030). PD-L1 expression was also significantly higher in current smokers (P=0.025). Correlation analysis was based on the individual values of patients and revealed a significant association between one of the targets of immune checkpoint inhibitors and tumor cell DNA-PK. Tumors with higher numbers of PD-1 positive cells also demonstrated higher tumor cell DNA-PK expressions (P=0.027). The results demonstrated a significant positive correlation between the PD-1/PD-L1 axis and tumor cell DNA-PK expression in patients with NSCLC. Further studies are required to clarify the significance of this correlation and its effect on the efficacy of immunotherapy and cytotoxic cancer therapy combinations.
RESUMEN
We performed an X-ray crystallographic study of complexes of protein kinase PIM-1 with three inhibitors comprising an adenosine mimetic moiety, a linker, and a peptide-mimetic (d-Arg)6 fragment. Guided by the structural models, simplified chemical structures with a reduced number of polar groups and chiral centers were designed. The developed inhibitors retained low-nanomolar potency and possessed remarkable selectivity toward the PIM kinases. The new inhibitors were derivatized with biotin or fluorescent dye Cy5 and then applied for the detection of PIM kinases in biochemical solutions and in complex biological samples. The sandwich assay utilizing a PIM-2-selective detection antibody featured a low limit of quantification (44 pg of active recombinant PIM-2). Fluorescent probes were efficiently taken up by U2OS cells and showed a high extent of co-localization with PIM-1 fused with a fluorescent protein. Overall, the developed inhibitors and derivatives represent versatile chemical tools for studying PIM function in cellular systems in normal and disease physiology.
Asunto(s)
Colorantes Fluorescentes , Imagen Molecular , Peptidomiméticos , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-pim-1 , Carbocianinas/química , Carbocianinas/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Humanos , Peptidomiméticos/química , Peptidomiméticos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-pim-1/metabolismoRESUMEN
STUDY QUESTION: Can a combination of the focussed protein kinase assays and a wide-scale proteomic screen pinpoint novel, clinically relevant players in decidualization in vitro and in vivo? SUMMARY ANSWER: Rho-dependent protein kinase (ROCK) activity is elevated in response to the combined treatment with progesterone and 8-Br-cAMP during in vitro decidualization, mirrored by increase of ROCK2 mRNA and protein levels and the phosphorylation levels of its downstream target Cofilin-1 (CFL1) in secretory versus proliferative endometrium. WHAT IS KNOWN ALREADY: Decidualization is associated with extensive changes in gene expression profile, proliferation, metabolism and morphology of endometrium, yet only a few underlying molecular pathways have been systematically explored. In vitro decidualization of endometrial stromal cells (ESCs) can be reportedly induced using multiple protocols with variable physiological relevance. In our previous studies, cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA)/prolactin axis that is classically upregulated during decidualization showed dampened activation in ESCs isolated from polycystic ovary syndrome (PCOS) patients as compared to controls. STUDY DESIGN, SIZE, DURATION: In vitro decidualization studies were carried out in passage 2 ESCs isolated from controls (N = 15) and PCOS patients (N = 9). In parallel, lysates of non-cultured ESCs isolated from proliferative (N = 4) or secretory (N = 4) endometrial tissue were explored. The observed trends were confirmed using cryo-cut samples of proliferative (N = 3) or secretory endometrium (N = 3), and in proliferative or secretory full tissue samples from controls (N = 8 and N = 9, respectively) or PCOS patients (N = 10 for both phases). PARTICIPANTS/MATERIALS, SETTING, METHODS: The activities of four target kinases were explored using kinase-responsive probes and selective inhibitors in lysates of in vitro decidualized ESCs and non-cultured ESCs isolated from tissue at different phases of the menstrual cycle. In the latter lysates, wide-scale proteomic and phosphoproteomic studies were further carried out. ROCK2 mRNA expression was explored in full tissue samples from controls or PCOS patients. The immunofluorescent staining of phosphorylated CFL1 was performed in full endometrial tissue samples, and in the in vitro decidualized fixed ESCs from controls or PCOS patients. Finally, the cellular migration properties were explored in live in vitro decidualized ESCs. MAIN RESULTS AND THE ROLE OF CHANCE: During in vitro decidualization, the activities of PKA, protein kinase B (Akt/PKB), and ROCK are increased while the activity of casein kinase 2 (CK2) is decreased; these initial trends are observable after 4-day treatment (P < 0.05) and are further augmented following the 9-day treatment (P < 0.001) with mixtures containing progesterone and 8-Br-cAMP or forskolin. The presence of progesterone is necessary for activation of ROCK, yet it is dispensable in the case of PKA and Akt/PKB; in comparison to controls, PCOS patient-derived ESCs feature dampened response to progesterone. In non-cultured ESCs isolated from secretory vs proliferative phase tissue, only activity of ROCK is increased (P < 0.01). ROCK2 protein levels are slightly elevated in secretory versus proliferative ESCs (relative mean standard deviation < 50%), and ROCK2 mRNA is elevated in mid-secretory versus proliferative full tissue samples (P < 0.05) obtained from controls but not PCOS patients. Activation of ROCK2 downstream signalling results in increase of phospho-S3 CFL1 in secretory endometrium (P < 0.001) as well as in vitro decidualized ESCs (P < 0.01) from controls but not PCOS patients. ROCK2-triggered alterations in the cytoskeleton are reflected by the significantly decreased motility of in vitro decidualized ESCs (P < 0.05). LARGE SCALE DATA: Proteomic and phosphoproteomic data are available via ProteomeXchange with identifier PXD026243. LIMITATIONS, REASONS FOR CAUTION: The number of biological samples was limited. The duration of protocol for isolation of non-cultured ESCs from tissue can potentially affect phosphorylation pathways in cells, yet the possible artefacts were minimized by the identical treatment of proliferative and secretory samples. WIDER IMPLICATIONS OF THE FINDINGS: The study demonstrated the benefits of combining the focussed kinase activity assay with wide-scale phosphoproteomics and showed the need for detailed elaboration of the in vitro decidualization protocols. ROCK was identified as the novel target of interest in decidualization, which requires closer attention in further studies-including the context of decidualization-related subfertility and infertility. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the Estonian Ministry of Education and Research, and the Estonian Research Council (PRG1076, PRG454, PSG230 and PSG608), Enterprise Estonia (EU48695), Horizon 2020 innovation grant (ERIN, Grant no. EU952516) of the European Commission, the COMBIVET ERA Chair, H2020-WIDESPREAD-2018-04 (Grant agreement no. 857418), the Academy of Finland (Project grants 315921 and 321763), the Finnish Medical Foundation and The Sigrid Juselius Foundation. The authors confirm that they have no conflict of interest with respect to the content of this article.
Asunto(s)
Progesterona , Quinasas Asociadas a rho , Factores Despolimerizantes de la Actina , Endometrio , Femenino , Humanos , Proteómica , Células del Estroma , Quinasas Asociadas a rho/genéticaRESUMEN
Cyclic adenosine monophosphate (cAMP) serves as a second messenger for numerous G-protein-coupled receptors. Changes in cellular cAMP levels reflect the biological activity of various GPCR-specific agents, including protein hormones. cAMP biosensors based on detection of Förster-type resonance energy transfer (FRET) offer unique advantages including the ratiometric nature of measurement, adjustable affinity toward detected molecule, capability of monitoring kinetics of cAMP release, and compatibility with the multi-well format and fluorescence plate reader platforms. In this chapter, we introduce the optimized version of the previously reported method to achieve sufficient and reproducible level of cAMP biosensor protein expression with the means of BacMam transduction system. As a practical challenge, we address the applicability of the designed assay for screening of biological activity of human hormones, including human chorionic gonadotropin (hCG) bearing different posttranslational modifications.
Asunto(s)
Baculoviridae/metabolismo , Gonadotropina Coriónica/metabolismo , AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de HL/metabolismo , Animales , Baculoviridae/genética , Técnicas Biosensibles/métodos , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sustancias para el Control de la Reproducción/farmacología , Transducción de SeñalRESUMEN
We show that the antibody, clone mAb(D38C6), of the α isoform of the catalytic subunit of PKA (PKAcα) inhibits the kinase-catalyzed phosphorylation with low-nanomolar inhibitory potency (Ki = 2.4 nM). This property of the antibody was established by its capacity to displace a synthetic small-molecule active site-binding (orthosteric) photoluminescent ARC-Lum(Fluo) probe from the complex with PKAcα. Likely, the competitiveness of association of the two binders with the protein is coming from two excluding conformations of PKAcα to which the binders bind. mAb(D38C6) possesses a linear peptide epitope and it binds to the disordered C-tail of unliganded inactive conformer of PKAcα. ARC-Lum(Fluo) probes bind to the ordered and active conformation of PKAcα with Phe327 residue from the C-tail taking part in the formation of the active core. Consecutive application of these competitive PKAcα binders was used to develop an immunoassay allowing the determination of PKAcα concentration in complex biological solutions. At first, PKAcα was captured from the solution by the isoform-specific antibody and thereafter a high-affinity ARC-Lum(Fluo) probe was used to displace PKAcα from the binary complex. The developed immunoassay could be used for quantification of small amounts (starting from 93 pg, 2.3 fmol) of PKAcα in cell lysates.
Asunto(s)
Anticuerpos Monoclonales/química , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/análisis , Inmunoensayo , Sondas Moleculares/química , Péptidos/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Especificidad de Anticuerpos , Sitios de Unión , Unión Competitiva , Línea Celular Tumoral , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/química , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Células HeLa , Humanos , Cinética , Mediciones Luminiscentes , Modelos Moleculares , Péptidos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de ProteínaRESUMEN
Stanniocalcin-1 (STC-1) is a pro-survival factor that protects tissues against stressors, such as hypoxia and inflammation. STC-1 is co-expressed with the endometrial receptivity markers, and recently endometrial STC-1 was reported to be dysregulated in endometriosis, a condition linked with endometrial progesterone resistance and inflammation. These features are also common in the endometrium in women with polycystic ovary syndrome (PCOS), the most common endocrine disorder in women. Given that women with PCOS present with subfertility, pregnancy complications, and increased risk for endometrial cancer, we investigated endometrial STC-1 expression in affected women. Endometrial biopsy samples were obtained from women with PCOS and controls, including samples from overweight/obese women with PCOS before and after a 3-month lifestyle intervention. A total of 98 PCOS and 85 control samples were used in immunohistochemistry, reverse-transcription polymerase chain reaction, or in vitro cell culture. STC-1 expression was analyzed at different cycle phases and in endometrial stromal cells (eSCs) after steroid hormone exposure. The eSCs were also challenged with 8-bromo-cAMP and hypoxia for STC-1 expression. The findings indicate that STC-1 expression is not steroid hormone mediated although secretory-phase STC-1 expression was blunted in PCOS. Lower expression seems to be related to attenuated STC-1 response to stressors in PCOS eSCs, shown as downregulation of protein kinase A activity. The 3-month lifestyle intervention did not restore STC-1 expression in PCOS endometrium. More studies are warranted to further elucidate the mechanisms behind the altered endometrial STC-1 expression and rescue mechanism in the PCOS endometrium.
Asunto(s)
Endometrio/metabolismo , Glicoproteínas/metabolismo , Sobrepeso/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Adulto , Ciclo Celular/fisiología , Femenino , Glicoproteínas/genética , Humanos , Obesidad/genética , Obesidad/metabolismo , Sobrepeso/genética , Síndrome del Ovario Poliquístico/genética , Células del Estroma/metabolismoRESUMEN
Photocaging of a tight-binding bisubstrate inhibitor of cAMP-dependent protein kinase (PKA) with a nitrodibenzofuran-based group fully abolished its inhibitory potency. The affinity difference between the photocaged and the active inhibitor was over 5 orders of magnitude. The photocaged inhibitor disrupted the PKA holoenzyme in cell lysates upon photolysis under a 398 nm LED.