Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell Rep ; 43(6): 114260, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838225

RESUMEN

Immunotherapy remains underexploited in acute myeloid leukemia (AML) compared to other hematological malignancies. Currently, gemtuzumab ozogamicin is the only therapeutic antibody approved for this disease. Here, to identify potential targets for immunotherapeutic intervention, we analyze the surface proteome of 100 genetically diverse primary human AML specimens for the identification of cell surface proteins and conduct single-cell transcriptome analyses on a subset of these specimens to assess antigen expression at the sub-population level. Through this comprehensive effort, we successfully identify numerous antigens and markers preferentially expressed by primitive AML cells. Many identified antigens are targeted by therapeutic antibodies currently under clinical evaluation for various cancer types, highlighting the potential therapeutic value of the approach. Importantly, this initiative uncovers AML heterogeneity at the surfaceome level, identifies several antigens and potential primitive cell markers characterizing AML subgroups, and positions immunotherapy as a promising approach to target AML subgroup specificities.


Asunto(s)
Inmunoterapia , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patología , Inmunoterapia/métodos , Proteínas de la Membrana/metabolismo
2.
J Immunother Cancer ; 12(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754915

RESUMEN

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) remains the standard of care for chemotherapy-refractory leukemia patients, but cure rates are still dismal. To prevent leukemia relapse following HSCT, we aim to improve the early graft-versus-leukemia effect mediated by natural killer (NK) cells. Our approach is based on the adoptive transfer of Therapeutic Inducers of Natural Killer cell Killing (ThINKK). ThINKK are expanded and differentiated from HSC, and exhibit blood plasmacytoid dendritic cell (pDC) features. We previously demonstrated that ThINKK stimulate NK cells and control acute lymphoblastic leukemia (ALL) development in a preclinical mouse model of HSCT for ALL. Here, we assessed the cellular identity of ThINKK and investigated their potential to activate allogeneic T cells. We finally evaluated the effect of immunosuppressive drugs on ThINKK-NK cell interaction. METHODS: ThINKK cellular identity was explored using single-cell RNA sequencing and flow cytometry. Their T-cell activating potential was investigated by coculture of allogeneic T cells and antigen-presenting cells in the presence or the absence of ThINKK. A preclinical human-to-mouse xenograft model was used to evaluate the impact of ThINKK injections on graft-versus-host disease (GvHD). Finally, the effect of immunosuppressive drugs on ThINKK-induced NK cell cytotoxicity against ALL cells was tested. RESULTS: The large majority of ThINKK shared the key characteristics of canonical blood pDC, including potent type-I interferon (IFN) production following Toll-like receptor stimulation. A minor subset expressed some, although not all, markers of other dendritic cell populations. Importantly, while ThINKK were not killed by allogeneic T or NK cells, they did not increase T cell proliferation induced by antigen-presenting cells nor worsened GvHD in vivo. Finally, tacrolimus, sirolimus or mycophenolate did not decrease ThINKK-induced NK cell activation and cytotoxicity. CONCLUSION: Our results indicate that ThINKK are type I IFN producing cells with low T cell activation capacity. Therefore, ThINKK adoptive immunotherapy is not expected to increase the risk of GvHD after allogeneic HSCT. Furthermore, our data predict that the use of tacrolimus, sirolimus or mycophenolate as anti-GvHD prophylaxis regimen will not decrease ThINKK therapeutic efficacy. Collectively, these preclinical data support the testing of ThINKK immunotherapy in a phase I clinical trial.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Animales , Ratones , Trasplante Homólogo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Enfermedad Injerto contra Huésped/prevención & control
3.
Clin Genet ; 106(2): 193-198, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38658784

RESUMEN

Acute promyelocytic leukemia (APL) represents 5%-10% of childhood acute myeloid leukemia (AML) and is the most curable subtype of AML. Fanconi anemia (FA) is one of the most common inherited bone marrow failure syndromes caused by biallelic pathogenic variants (PV) in specific DNA-repair genes. Biallelic PVs in FANCD1/BRCA2 (FA-D1) account for 3% of FA and are associated with early-onset leukemia and a high risk of solid tumors. We report a 4 year-old boy from non-consanguineous parents diagnosed with standard risk APL. This child had café-au-lait spots and an extra thumb remnant. Genomic sequencing revealed two PV in FANCD1/BRCA2 confirming a diagnosis of FA-D1. Chromosomal breakage studies were compatible with FA. Each parent carried one variant and had no personal history of cancer. Morphological then molecular remissions were achieved with all-trans retinoic acid and Arsenic trioxide. This patient underwent haploidentical stem cell transplant. In addition to our patient, a literature search revealed four additional patients with APL/FA, with a total of three patients with FA-D1. This raises the possibility of an association between such rare disorders. Practical management of APL in the setting of FA-D1 is discussed with an overview of current evidence and knowledge gaps.


Asunto(s)
Anemia de Fanconi , Leucemia Promielocítica Aguda , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/terapia , Anemia de Fanconi/complicaciones , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/diagnóstico , Masculino , Preescolar , Proteína BRCA2/genética , Predisposición Genética a la Enfermedad
4.
Nat Commun ; 15(1): 2435, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499573

RESUMEN

The potential of immune checkpoint inhibitors (ICI) may be limited in situations where immune cell fitness is impaired. Here, we show that the efficacy of cancer immunotherapies is compromised by the accumulation of senescent cells in mice and in the context of therapy-induced senescence (TIS). Resistance to immunotherapy is associated with a decrease in the accumulation and activation of CD8 T cells within tumors. Elimination of senescent cells restores immune homeostasis within the tumor micro-environment (TME) and increases mice survival in response to immunotherapy. Using single-cell transcriptomic analysis, we observe that the injection of ABT263 (Navitoclax) reverses the exacerbated immunosuppressive profile of myeloid cells in the TME. Elimination of these myeloid cells also restores CD8 T cell proliferation in vitro and abrogates immunotherapy resistance in vivo. Overall, our study suggests that the use of senolytic drugs before ICI may constitute a pharmacological approach to improve the effectiveness of cancer immunotherapies.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Ratones , Inmunoterapia , Neoplasias/patología , Senescencia Celular
5.
Blood Adv ; 8(1): 112-129, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729615

RESUMEN

ABSTRACT: Acute megakaryoblastic leukemia (AMKL) is a rare, developmentally restricted, and highly lethal cancer of early childhood. The paucity and hypocellularity (due to myelofibrosis) of primary patient samples hamper the discovery of cell- and genotype-specific treatments. AMKL is driven by mutually exclusive chimeric fusion oncogenes in two-thirds of the cases, with CBFA2T3::GLIS2 (CG2) and NUP98 fusions (NUP98r) representing the highest-fatality subgroups. We established CD34+ cord blood-derived CG2 models (n = 6) that sustain serial transplantation and recapitulate human leukemia regarding immunophenotype, leukemia-initiating cell frequencies, comutational landscape, and gene expression signature, with distinct upregulation of the prosurvival factor B-cell lymphoma 2 (BCL2). Cell membrane proteomic analyses highlighted CG2 surface markers preferentially expressed on leukemic cells compared with CD34+ cells (eg, NCAM1 and CD151). AMKL differentiation block in the mega-erythroid progenitor space was confirmed by single-cell profiling. Although CG2 cells were rather resistant to BCL2 genetic knockdown or selective pharmacological inhibition with venetoclax, they were vulnerable to strategies that target the megakaryocytic prosurvival factor BCL-XL (BCL2L1), including in vitro and in vivo treatment with BCL2/BCL-XL/BCL-W inhibitor navitoclax and DT2216, a selective BCL-XL proteolysis-targeting chimera degrader developed to limit thrombocytopenia in patients. NUP98r AMKL were also sensitive to BCL-XL inhibition but not the NUP98r monocytic leukemia, pointing to a lineage-specific dependency. Navitoclax or DT2216 treatment in combination with low-dose cytarabine further reduced leukemic burden in mice. This work extends the cellular and molecular diversity set of human AMKL models and uncovers BCL-XL as a therapeutic vulnerability in CG2 and NUP98r AMKL.


Asunto(s)
Antineoplásicos , Leucemia Megacarioblástica Aguda , Humanos , Niño , Preescolar , Animales , Ratones , Leucemia Megacarioblástica Aguda/tratamiento farmacológico , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patología , Proteómica , Factores de Transcripción , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Represoras
6.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014231

RESUMEN

Single-cell genomics has the potential to map cell states and their dynamics in an unbiased way in response to perturbations like disease. However, elucidating the cell-state transitions from healthy to disease requires analyzing data from perturbed samples jointly with unperturbed reference samples. Existing methods for integrating and jointly visualizing single-cell datasets from distinct contexts tend to remove key biological differences or do not correctly harmonize shared mechanisms. We present Decipher, a model that combines variational autoencoders with deep exponential families to reconstruct derailed trajectories (https://github.com/azizilab/decipher). Decipher jointly represents normal and perturbed single-cell RNA-seq datasets, revealing shared and disrupted dynamics. It further introduces a novel approach to visualize data, without the need for methods such as UMAP or TSNE. We demonstrate Decipher on data from acute myeloid leukemia patient bone marrow specimens, showing that it successfully characterizes the divergence from normal hematopoiesis and identifies transcriptional programs that become disrupted in each patient when they acquire NPM1 driver mutations.

7.
Diagnostics (Basel) ; 13(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37296725

RESUMEN

It is believed that fetal hemoglobin (HbF) expression in adults is largely genetically regulated. The increased expression of HbF in pregnancy has been reported in a small number of articles. Different mechanisms have been proposed, but the description of HbF expression during pregnancy remains unclear. The objectives of this study were to document HbF expression during peri and postpartum periods, confirm its maternal origin, and assess clinical and biochemical parameters potentially associated with HbF modulation. In this observational prospective study, 345 pregnant women were followed. At baseline, 169 had HbF expression (≥1% of total hemoglobin) and 176 did not have HbF expression. Women were followed at the obstetric clinic during their pregnancy. Clinical and biochemical parameters were measured at each visit. Analyses were made to determine which parameters had a significant correlation to HbF expression. Results show that HbF expression of ≥1% during peri and postpartum periods in pregnant women without influencing comorbidities is at its highest peak during the first trimester. In all women, it was proven that HbF was of maternal origin. A significant positive correlation between HbF expression, ßeta-human chorionic gonadotropin (ß-HCG), and glycosylated hemoglobin (HbA1c) was present. A significant negative association between HbF expression and total hemoglobin was found. HbF expression induction during pregnancy is probably associated with an increase in ß-HCG and HbA1C, and a decrease in total hemoglobin, which could temporarily reactivate the fetal erythropoietic system.

8.
iScience ; 26(1): 105783, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36514310

RESUMEN

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

9.
Blood ; 141(3): 271-284, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36351237

RESUMEN

Homeostatic adaptation to systemic iron overload involves transcriptional induction of bone morphogenetic protein 6 (BMP6) in liver sinusoidal endothelial cells (LSECs). BMP6 is then secreted to activate signaling of the iron hormone hepcidin (HAMP) in neighboring hepatocytes. To explore the mechanism of iron sensing by LSECs, we generated TfrcTek-Cre mice with endothelial cell-specific ablation of transferrin receptor 1 (Tfr1). We also used control Tfrcfl/fl mice to characterize the LSEC-specific molecular responses to iron using single-cell transcriptomics. TfrcTek-Cre animals tended to have modestly increased liver iron content (LIC) compared with Tfrcfl/fl controls but expressed physiological Bmp6 and Hamp messenger RNA (mRNA). Despite a transient inability to upregulate Bmp6, they eventually respond to iron challenges with Bmp6 and Hamp induction, yet occasionally to levels slightly lower relative to LIC. High dietary iron intake triggered the accumulation of serum nontransferrin bound iron (NTBI), which significantly correlated with liver Bmp6 and Hamp mRNA levels and elicited more profound alterations in the LSEC transcriptome than holo-transferrin injection. This culminated in the robust induction of Bmp6 and other nuclear factor erythroid 2-related factor 2 (Nrf2) target genes, as well as Myc target genes involved in ribosomal biogenesis and protein synthesis. LSECs and midzonal hepatocytes were the most responsive liver cells to iron challenges and exhibited the highest expression of Bmp6 and Hamp mRNAs, respectively. Our data suggest that during systemic iron overload, LSECs internalize NTBI, which promotes oxidative stress and thereby transcriptionally induces Bmp6 via Nrf2. Tfr1 appears to contribute to iron sensing by LSECs, mostly under low iron conditions.


Asunto(s)
Sobrecarga de Hierro , Hierro , Ratones , Animales , Hierro/metabolismo , Transferrina/metabolismo , Células Endoteliales/metabolismo , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Factor 2 Relacionado con NF-E2 , Hepatocitos/metabolismo , Hígado/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , ARN Mensajero/metabolismo
10.
Mol Ther Methods Clin Dev ; 27: 230-245, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36320412

RESUMEN

Antigen-specific T cell expansion ex vivo followed by adoptive transfer enables targeting of a multitude of microbial and cancer antigens. However, clinical-scale T cell expansion from rare precursors requires repeated stimulation, which may lead to T cell dysfunction and limited therapeutic potential. We used a clinically compliant protocol to expand Epstein-Barr virus (EBV) and Wilms tumor 1 (WT1) antigen-specific CD8+ T cells, and leveraged T cell exhaustion-associated inhibitory receptor blockade to improve T cell expansion. Several inhibitory receptors were expressed early by ex vivo-expanded antigen-specific CD8+ T cells, including PD-1 and TIM3, with co-expression matching evidence of T cell dysfunction as the cultures progressed. Introduction of anti-PD-L1 and anti-TIM3 blockade in combination (but not individually) to the culture led to markedly improved antigen-specific T cell expansion without inducing T cell dysfunction. Single-cell RNA sequencing (RNA-seq) and T cell receptor (TCR) repertoire profiling revealed that double blockade does not impart specific transcriptional programs in T cells or alterations in TCR repertoires. However, combined blockade may affect gene expression in a minority of clonotypes in a donor-specific fashion. We conclude that antigen-specific CD8+ T cell manufacturing can be improved by using TIM3 and PD-L1/PD-1 axis blockade in combination. This approach is readily applicable to several adoptive immunotherapy strategies.

11.
Blood Adv ; 6(16): 4793-4806, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35797243

RESUMEN

High-mobility group AT-hook 2 (HMGA2) is a nonhistone chromatin-binding protein that is normally expressed in stem cells of various tissues and aberrantly detected in several tumor types. We recently observed that one-fourth of human acute myeloid leukemia (AML) specimens express HMGA2, which associates with a very poor prognosis. We present results indicating that HMGA2+ AMLs share a distinct transcriptional signature representing an immature phenotype. Using single-cell analyses, we showed that HMGA2 is expressed in CD34+ subsets of stem cells and early progenitors, whether normal or derived from AML specimens. Of interest, we found that one of the strongest gene expression signatures associated with HMGA2 in AML is the upregulation of G2/M checkpoint genes. Whole-genome CRISPR/Cas9 screening in HMGA2 overexpressing cells further revealed a synthetic lethal interaction with several G2/M checkpoint genes. Accordingly, small molecules that target G2/M proteins were preferentially active in vitro and in vivo on HMGA2+ AML specimens. Together, our findings suggest that HMGA2 is a key functional determinant in AML and is associated with stem cell features, G2/M status, and related drug sensitivity.


Asunto(s)
Leucemia Mieloide Aguda , Antígenos CD34 , Puntos de Control del Ciclo Celular , Humanos , Leucemia Mieloide Aguda/patología , Regulación hacia Arriba
13.
Blood Adv ; 6(2): 509-514, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34731885

RESUMEN

Cholesterol homeostasis has been proposed as one mechanism contributing to chemoresistance in AML and hence, inclusion of statins in therapeutic regimens as part of clinical trials in AML has shown encouraging results. Chemical screening of primary human AML specimens by our group led to the identification of lipophilic statins as potent inhibitors of AMLs from a wide range of cytogenetic groups. Genetic screening to identify modulators of the statin response uncovered the role of protein geranylgeranylation and of RAB proteins, coordinating various aspect of vesicular trafficking, in mediating the effects of statins on AML cell viability. We further show that statins can inhibit vesicle-mediated transport in primary human specimens, and that statins sensitive samples show expression signatures reminiscent of enhanced vesicular trafficking. Overall, this study sheds light into the mechanism of action of statins in AML and identifies a novel vulnerability for cytogenetically diverse AML.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Leucemia Mieloide Aguda , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética
14.
Blood Adv ; 6(4): 1329-1341, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34933343

RESUMEN

The molecular hallmark of childhood acute lymphoblastic leukemia (ALL) is characterized by recurrent, prognostic genetic alterations, many of which are cryptic by conventional cytogenetics. RNA sequencing (RNA-seq) is a powerful next-generation sequencing technology that can simultaneously identify cryptic gene rearrangements, sequence mutations and gene expression profiles in a single assay. We examined the feasibility and utility of incorporating RNA-seq into a prospective multicenter phase 3 clinical trial for children with newly diagnosed ALL. The Dana-Farber Cancer Institute ALL Consortium Protocol 16-001 enrolled 173 patients with ALL who consented to optional studies and had samples available for RNA-seq. RNA-seq identified at least 1 alteration in 157 patients (91%). Fusion detection was 100% concordant with results obtained from conventional cytogenetic analyses. An additional 56 gene fusions were identified by RNA-seq, many of which confer prognostic or therapeutic significance. Gene expression profiling enabled further molecular classification into the following B-cell ALL (B-ALL) subgroups: high hyperdiploid (n = 36), ETV6-RUNX1/-like (n = 31), TCF3-PBX1 (n = 7), KMT2A-rearranged (KMT2A-R; n = 5), intrachromosomal amplification of chromosome 21 (iAMP21) (n = 1), hypodiploid (n = 1), Philadelphia chromosome (Ph)-positive/Ph-like (n = 16), DUX4-R (n = 11), PAX5 alterations (PAX5 alt; n = 11), PAX5 P80R (n = 1), ZNF384-R (n = 4), NUTM1-R (n = 1), MEF2D-R (n = 1), and others (n = 10). RNA-seq identified 141 nonsynonymous mutations in 93 patients (54%); the most frequent were RAS-MAPK pathway mutations. Among 79 patients with both low-density array and RNA-seq data for the Philadelphia chromosome-like gene signature prediction, results were concordant in 74 patients (94%). In conclusion, RNA-seq identified several clinically relevant genetic alterations not detected by conventional methods, which supports the integration of this technology into front-line pediatric ALL trials. This trial was registered at www.clinicaltrials.gov as #NCT03020030.


Asunto(s)
Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Perfilación de la Expresión Génica , Reordenamiento Génico , Humanos , Estudios Multicéntricos como Asunto , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudios Prospectivos
15.
Blood ; 135(21): 1882-1886, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32315381

RESUMEN

RUNX1 is mutated in ∼10% of adult acute myeloid leukemia (AML). Although most RUNX1 mutations in this disease are believed to be acquired, they can also be germline. Indeed, germline RUNX1 mutations result in the well-described autosomal-dominant familial platelet disorder with predisposition to hematologic malignancies (RUNX1-FPD, FPD/AML, FPDMM); ∼44% of affected individuals progress to AML or myelodysplastic syndromes. Using the Leucegene RUNX1 AML patient group, we sought to investigate the proportion of germline vs acquired RUNX1 mutations in this cohort. Our results showed that 30% of RUNX1 mutations in our AML cohort are germline. Molecular profiling revealed higher frequencies of NRAS mutations and other mutations known to activate various signaling pathways in these patients with RUNX1 germline-mutated AML. Moreover, 2 patients (mother and son) had co-occurrence of RUNX1 and CEBPA germline mutations, with variable AML disease onset at 59 and 27 years, respectively. Together, these data suggest a higher than anticipated frequency of germline RUNX1 mutations in the Leucegene cohort and further highlight the importance of testing for RUNX1 mutations in instances in which allogeneic stem cell transplantation using a related donor is envisioned.


Asunto(s)
Biomarcadores de Tumor/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factor de Transcripción GATA2/genética , Mutación de Línea Germinal , Leucemia Mieloide Aguda/genética , Mutación , Adulto , Anciano , Femenino , Estudios de Seguimiento , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Pronóstico
16.
Nat Med ; 26(2): 259-269, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32042191

RESUMEN

Developmental processes underlying normal tissue regeneration have been implicated in cancer, but the degree of their enactment during tumor progression and under the selective pressures of immune surveillance, remain unknown. Here we show that human primary lung adenocarcinomas are characterized by the emergence of regenerative cell types, typically seen in response to lung injury, and by striking infidelity among transcription factors specifying most alveolar and bronchial epithelial lineages. In contrast, metastases are enriched for key endoderm and lung-specifying transcription factors, SOX2 and SOX9, and recapitulate more primitive transcriptional programs spanning stem-like to regenerative pulmonary epithelial progenitor states. This developmental continuum mirrors the progressive stages of spontaneous outbreak from metastatic dormancy in a mouse model and exhibits SOX9-dependent resistance to natural killer cells. Loss of developmental stage-specific constraint in macrometastases triggered by natural killer cell depletion suggests a dynamic interplay between developmental plasticity and immune-mediated pruning during metastasis.


Asunto(s)
Adenocarcinoma/inmunología , Adenocarcinoma/patología , Sistema Inmunológico/fisiología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Animales , Bronquios/metabolismo , Diferenciación Celular , Linaje de la Célula , Análisis por Conglomerados , Bases de Datos Genéticas , Progresión de la Enfermedad , Endodermo/metabolismo , Femenino , Humanos , Hidrogeles/química , Células Asesinas Naturales/metabolismo , Pulmón/patología , Ratones , Fenotipo , Alveolos Pulmonares/metabolismo , Regeneración , Transducción de Señal
17.
Leukemia ; 34(1): 63-74, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31300747

RESUMEN

Acute myeloid leukemias (AML) with mutations in the NPM1 gene (NPM1c+) represent a large AML subgroup with varying response to conventional treatment, highlighting the need to develop targeted therapeutic strategies for this disease. We screened a library of clinical drugs on a cohort of primary human AML specimens and identified the BCL2 inhibitor ABT-199 as a selective agent against NPM1c+ AML. Mutational analysis of ABT-199-sensitive and -resistant specimens identified mutations in NPM1, RAD21, and IDH1/IDH2 as predictors of ABT-199 sensitivity. Comparative transcriptome analysis further uncovered BCL2A1 as a potential mediator of ABT-199 resistance in AML. In line with our observation that RAD21 mutation confers sensitivity to ABT-199, we provide functional evidence that reducing RAD21 levels can sensitize AML cells to BCL2 inhibition. Moreover, we demonstrate that ABT-199 is able to produce selective anti-AML activity in vivo toward AML with mutations associated with compound sensitivity in PDX models. Overall, this study delineates the contribution of several genetic events to the response to ABT-199 and provides a rationale for the development of targeted therapies for NPM1c+ AML.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Resistencia a Antineoplásicos/genética , Leucemia Mieloide Aguda/genética , Antígenos de Histocompatibilidad Menor/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Proteínas Nucleares/genética , Nucleofosmina , Células Tumorales Cultivadas
18.
Cell ; 179(4): 846-863.e24, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31668803

RESUMEN

Dendritic cells (DCs) play a critical role in orchestrating adaptive immune responses due to their unique ability to initiate T cell responses and direct their differentiation into effector lineages. Classical DCs have been divided into two subsets, cDC1 and cDC2, based on phenotypic markers and their distinct abilities to prime CD8 and CD4 T cells. While the transcriptional regulation of the cDC1 subset has been well characterized, cDC2 development and function remain poorly understood. By combining transcriptional and chromatin analyses with genetic reporter expression, we identified two principal cDC2 lineages defined by distinct developmental pathways and transcriptional regulators, including T-bet and RORγt, two key transcription factors known to define innate and adaptive lymphocyte subsets. These novel cDC2 lineages were characterized by distinct metabolic and functional programs. Extending our findings to humans revealed conserved DC heterogeneity and the presence of the newly defined cDC2 subsets in human cancer.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Heterogeneidad Genética , Neoplasias/inmunología , Inmunidad Adaptativa/genética , Animales , Diferenciación Celular/inmunología , Cromatina/genética , Células Dendríticas/inmunología , Regulación del Desarrollo de la Expresión Génica , Humanos , Inmunidad Innata/genética , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Ratones , Neoplasias/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transcripción Genética/inmunología
19.
Cell Stem Cell ; 25(5): 682-696.e8, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31495782

RESUMEN

Transcriptional regulators, including the cohesin complex member STAG2, are recurrently mutated in cancer. The role of STAG2 in gene regulation, hematopoiesis, and tumor suppression remains unresolved. We show that Stag2 deletion in hematopoietic stem and progenitor cells (HSPCs) results in altered hematopoietic function, increased self-renewal, and impaired differentiation. Chromatin immunoprecipitation (ChIP) sequencing revealed that, although Stag2 and Stag1 bind a shared set of genomic loci, a component of Stag2 binding sites is unoccupied by Stag1, even in Stag2-deficient HSPCs. Although concurrent loss of Stag2 and Stag1 abrogated hematopoiesis, Stag2 loss alone decreased chromatin accessibility and transcription of lineage-specification genes, including Ebf1 and Pax5, leading to increased self-renewal and reduced HSPC commitment to the B cell lineage. Our data illustrate a role for Stag2 in transformation and transcriptional dysregulation distinct from its shared role with Stag1 in chromosomal segregation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Autorrenovación de las Células/genética , Cromatina/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Linfocitos B/metabolismo , Proteínas de Ciclo Celular/genética , Linaje de la Célula/genética , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Células Madre Hematopoyéticas/citología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Proteínas Nucleares/genética , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , RNA-Seq , Mutaciones Letales Sintéticas/genética , Transactivadores/genética , Transactivadores/metabolismo
20.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31427380

RESUMEN

Mutations identified in acute myeloid leukemia patients are useful for prognosis and for selecting targeted therapies. Detection of such mutations using next-generation sequencing data requires a computationally intensive read mapping step followed by several variant calling methods. Targeted mutation identification drastically shifts the usual tradeoff between accuracy and performance by concentrating all computations over a small portion of sequence space. Here, we present km, an efficient approach leveraging k-mer decomposition of reads to identify targeted mutations. Our approach is versatile, as it can detect single-base mutations, several types of insertions and deletions, as well as fusions. We used two independent cohorts (The Cancer Genome Atlas and Leucegene) to show that mutation detection by km is fast, accurate, and mainly limited by sequencing depth. Therefore, km allows the establishment of fast diagnostics from next-generation sequencing data and could be suitable for clinical applications.


Asunto(s)
Leucemia Mieloide Aguda/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Algoritmos , Biología Computacional/métodos , Bases de Datos Genéticas , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias , RNA-Seq , Programas Informáticos , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...