Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992089

RESUMEN

Mitochondria contain dedicated ribosomes (mitoribosomes), which synthesize the mitochondrial-encoded core components of the oxidative phosphorylation complexes. The RNA and protein components of mitoribosomes are encoded on two different genomes (mitochondrial and nuclear) and are assembled into functional complexes with the help of dedicated factors inside the organelle. Defects in mitoribosome biogenesis are associated with severe human diseases, yet the molecular pathway of mitoribosome assembly remains poorly understood. Here, we applied a multidisciplinary approach combining biochemical isolation and analysis of native mitoribosomal assembly complexes with quantitative mass spectrometry and mathematical modeling to reconstitute the entire assembly pathway of the human mitoribosome. We show that, in contrast to its bacterial and cytosolic counterparts, human mitoribosome biogenesis involves the formation of ribosomal protein-only modules, which then assemble on the appropriate ribosomal RNA moiety in a coordinated fashion. The presence of excess protein-only modules primed for assembly rationalizes how mitochondria cope with the challenge of forming a protein-rich ribonucleoprotein complex of dual genetic origin. This study provides a comprehensive roadmap of mitoribosome biogenesis, from very early to late maturation steps, and highlights the evolutionary divergence from its bacterial ancestor.

2.
Nat Commun ; 13(1): 6406, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302763

RESUMEN

Translation termination requires release factors that read a STOP codon in the decoding center and subsequently facilitate the hydrolysis of the nascent peptide chain from the peptidyl tRNA within the ribosome. In human mitochondria eleven open reading frames terminate in the standard UAA or UAG STOP codon, which can be recognized by mtRF1a, the proposed major mitochondrial release factor. However, two transcripts encoding for COX1 and ND6 terminate in the non-conventional AGA or AGG codon, respectively. How translation termination is achieved in these two cases is not known. We address this long-standing open question by showing that the non-canonical release factor mtRF1 is a specialized release factor that triggers COX1 translation termination, while mtRF1a terminates the majority of other mitochondrial translation events including the non-canonical ND6. Loss of mtRF1 leads to isolated COX deficiency and activates the mitochondrial ribosome-associated quality control accompanied by the degradation of COX1 mRNA to prevent an overload of the ribosome rescue system. Taken together, these results establish the role of mtRF1 in mitochondrial translation, which had been a mystery for decades, and lead to a comprehensive picture of translation termination in human mitochondria.


Asunto(s)
Ciclooxigenasa 1 , Proteínas Mitocondriales , Ribosomas Mitocondriales , Factores de Terminación de Péptidos , Humanos , Codón de Terminación/genética , Codón de Terminación/metabolismo , Ribosomas Mitocondriales/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Control de Calidad , Ribosomas/genética , Ribosomas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ciclooxigenasa 1/genética
3.
Trends Cell Biol ; 32(3): 182-185, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34635384

RESUMEN

Final maturation steps during ribosome biogenesis require the assistance of assembly and quality control factors to ensure the folding of rRNA and proteins into a functional translation machinery. Here we integrate several recent structural snapshots of native large ribosomal subunit intermediates into the complex pathway of mitochondrial ribosome assembly.


Asunto(s)
Ribosomas Mitocondriales , Ribosomas , Dominio Catalítico , Humanos , Ribosomas Mitocondriales/química , Ribosomas Mitocondriales/metabolismo , Biogénesis de Organelos , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
4.
RNA Biol ; 19(1): 117-131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34923906

RESUMEN

The universally conserved process of protein biosynthesis is crucial for maintaining cellular homoeostasis and in eukaryotes, mitochondrial translation is essential for aerobic energy production. Mitochondrial ribosomes (mitoribosomes) are highly specialized to synthesize 13 core subunits of the oxidative phosphorylation (OXPHOS) complexes. Although the mitochondrial translation machinery traces its origin from a bacterial ancestor, it has acquired substantial differences within this endosymbiotic environment. The cycle of mitoribosome function proceeds through the conserved canonical steps of initiation, elongation, termination and mitoribosome recycling. However, when mitoribosomes operate in the context of limited translation factors or on aberrant mRNAs, they can become stalled and activation of rescue mechanisms is required. This review summarizes recent advances in the understanding of protein biosynthesis in mitochondria, focusing especially on the mechanistic and physiological details of translation termination, and mitoribosome recycling and rescue.


Asunto(s)
Mitocondrias/fisiología , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Animales , Bacterias/genética , Bacterias/metabolismo , Eucariontes/fisiología , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
5.
Cell ; 184(23): 5824-5837.e15, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672953

RESUMEN

The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Genes Mitocondriales , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Oligonucleótidos/química , Fosforilación Oxidativa , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Nat Commun ; 12(1): 3672, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135319

RESUMEN

Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.


Asunto(s)
Proteínas de Unión al GTP/química , Ribosomas Mitocondriales/química , Proteínas de Unión al GTP Monoméricas/química , Microscopía por Crioelectrón , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos , Biogénesis de Organelos , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Pliegue de Proteína , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
7.
Trends Cell Biol ; 31(4): 284-297, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33419649

RESUMEN

Mitoribosomes catalyze essential protein synthesis within mitochondria. Mitoribosome biogenesis is assisted by an increasing number of assembly factors, among which guanosine triphosphate hydrolases (GTPases) are the most abundant class. Here, we review recent progress in our understanding of mitoribosome assembly GTPases. We describe their shared and specific features and mechanisms of action, compare them with their bacterial counterparts, and discuss their possible roles in the assembly of small or large mitoribosomal subunits and the formation of the monosome by establishing quality-control checkpoints during these processes. Furthermore, following the recent unification of the nomenclature for the mitoribosomal proteins, we also propose a unified nomenclature for mitoribosome assembly GTPases.


Asunto(s)
GTP Fosfohidrolasas , Ribosomas Mitocondriales , Proteínas Ribosómicas , GTP Fosfohidrolasas/metabolismo , Mitocondrias , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Proteínas Ribosómicas/metabolismo
8.
Nucleic Acids Res ; 48(22): 12929-12942, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33264405

RESUMEN

Translation and ribosome biogenesis in mitochondria require auxiliary factors that ensure rapid and accurate synthesis of mitochondrial proteins. Defects in translation are associated with oxidative phosphorylation deficiency and cause severe human diseases, but the exact roles of mitochondrial translation-associated factors are not known. Here we identify the functions of GTPBP6, a homolog of the bacterial ribosome-recycling factor HflX, in human mitochondria. Similarly to HflX, GTPBP6 facilitates the dissociation of ribosomes in vitro and in vivo. In contrast to HflX, GTPBP6 is also required for the assembly of mitochondrial ribosomes. GTPBP6 ablation leads to accumulation of late assembly intermediate(s) of the large ribosomal subunit containing ribosome biogenesis factors MTERF4, NSUN4, MALSU1 and the GTPases GTPBP5, GTPBP7 and GTPBP10. Our data show that GTPBP6 has a dual function acting in ribosome recycling and biogenesis. These findings contribute to our understanding of large ribosomal subunit assembly as well as ribosome recycling pathway in mitochondria.


Asunto(s)
Proteínas de Unión al GTP/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales , GTP Fosfohidrolasas/genética , Humanos , Metiltransferasas/genética , Proteínas de Unión al GTP Monoméricas/genética , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/genética , Factores de Transcripción/genética
9.
Oncol Res Treat ; 41(10): 634-642, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30145586

RESUMEN

BACKGROUND: This study evaluated the distribution of epidermal growth factor receptor (EGFR) T790M mutations in treatment-naïve tumor and normal samples obtained from cancer patients. METHODS: We utilized allele-specific PCR (AS-PCR), digital droplet PCR (ddPCR) and next generation sequencing (NGS) to detect EGFR T790M allele in several collections of tumor and normal human tissues. RESULTS: AS-PCR analysis of treatment-naïve tumor samples revealed somatic T790M mutation in 3/394 (1%) non-small cell lung carcinomas (NSCLC) carrying the tyrosine kinase inhibitor (TKI)-sensitizing EGFR mutation, but in none of 334 NSCLC lacking EGFR exon 19 deletions (ex19del) or L858R substitutions and in none of 235 non-lung tumors. Use of highly sensitive and quantitative assays, such as ddPCR and NGS, produced a high number of T790M-specific signals even in presumably T790M-negative DNA specimens. This background noise was evidently higher in degraded DNA isolated from formalin-fixed paraffin-embedded tissues as compared to high molecular weight DNA. A combination of AS-PCR, ddPCR and NGS revealed mosaic EGFR T790M allele in 2/68 (3%) NSCLC treated with the first-generation TKI. Both these tumors produced evident and durable response to gefitinib. CONCLUSION: Detection of mosaic EGFR T790M mutation in treatment-naïve samples may be compromised by yet unresolved technical issues and may have limited clinical value.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Artefactos , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Gefitinib/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/genética , Mosaicismo
10.
Nucleic Acids Res ; 46(16): 8471-8482, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30085210

RESUMEN

The human mitochondrial translation apparatus, which synthesizes the core subunits of the oxidative phosphorylation system, is of central interest as mutations in several genes encoding for mitoribosomal proteins or translation factors cause severe human diseases. Little is known, how this complex machinery assembles from nuclear-encoded protein components and mitochondrial-encoded RNAs, and which ancillary factors are required to form a functional mitoribosome. We have characterized the human Obg protein GTPBP10, which associates specifically with the mitoribosomal large subunit at a late maturation state. Defining its interactome, we have shown that GTPBP10 is in a complex with other mtLSU biogenesis factors including mitochondrial RNA granule components, the 16S rRNA module and late mtLSU assembly factors such as MALSU1, SMCR7L, MTERF4 and NSUN4. GTPBP10 deficiency leads to a drastic reduction in 55S monosome formation resulting in defective mtDNA-expression and in a decrease in cell growth. Our results suggest that GTPBP10 is a ribosome biogenesis factor of the mtLSU required for late stages of maturation.


Asunto(s)
Ribosomas Mitocondriales/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , ADN Mitocondrial/genética , Humanos , Metiltransferasas/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Fosforilación Oxidativa , ARN Ribosómico 16S/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...