Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Leukemia ; 38(5): 1019-1031, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627586

RESUMEN

The hypomethylating agent 5-azacytidine (AZA) is the first-line treatment for AML patients unfit for intensive chemotherapy. The effect of AZA results in part from T-cell cytotoxic responses against MHC-I-associated peptides (MAPs) deriving from hypermethylated genomic regions such as cancer-testis antigens (CTAs), or endogenous retroelements (EREs). However, evidence supporting higher ERE MAPs presentation after AZA treatment is lacking. Therefore, using proteogenomics, we examined the impact of AZA on the repertoire of MAPs and their source transcripts. AZA-treated AML upregulated both CTA and ERE transcripts, but only CTA MAPs were presented at greater levels. Upregulated ERE transcripts triggered innate immune responses against double-stranded RNAs but were degraded by autophagy, and not processed into MAPs. Autophagy resulted from the formation of protein aggregates caused by AZA-dependent inhibition of DNMT2. Autophagy inhibition had an additive effect with AZA on AML cell proliferation and survival, increased ERE levels, increased pro-inflammatory responses, and generated immunogenic tumor-specific ERE-derived MAPs. Finally, autophagy was associated with a lower abundance of CD8+ T-cell markers in AML patients expressing high levels of EREs. This work demonstrates that AZA-induced EREs are degraded by autophagy and shows that inhibiting autophagy can improve the immune recognition of AML blasts in treated patients.


Asunto(s)
Antimetabolitos Antineoplásicos , Autofagia , Azacitidina , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Azacitidina/farmacología , Autofagia/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Metilación de ADN/efectos de los fármacos , Proliferación Celular , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología
2.
Elife ; 122024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635416

RESUMEN

Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/ß. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.


Asunto(s)
Proteína AIRE , Elementos Transponibles de ADN , Ratones , Humanos , Animales , Timo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Timocitos/metabolismo , Células Epiteliales/metabolismo , Diferenciación Celular/genética , Ratones Endogámicos C57BL
3.
J Clin Invest ; 134(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37906288

RESUMEN

Hormone receptor-positive breast cancer (HR+) is immunologically cold and has not benefited from advances in immunotherapy. In contrast, subsets of triple-negative breast cancer (TNBC) display high leukocytic infiltration and respond to checkpoint blockade. CD8+ T cells, the main effectors of anticancer responses, recognize MHC I-associated peptides (MAPs). Our work aimed to characterize the repertoire of MAPs presented by HR+ and TNBC tumors. Using mass spectrometry, we identified 57,094 unique MAPs in 26 primary breast cancer samples. MAP source genes highly overlapped between both subtypes. We identified 25 tumor-specific antigens (TSAs) mainly deriving from aberrantly expressed regions. TSAs were most frequently identified in TNBC samples and were more shared among The Cancer Genome Atlas (TCGA) database TNBC than HR+ samples. In the TNBC cohort, the predicted number of TSAs positively correlated with leukocytic infiltration and overall survival, supporting their immunogenicity in vivo. We detected 49 tumor-associated antigens (TAAs), some of which derived from cancer-associated fibroblasts. Functional expansion of specific T cell assays confirmed the in vitro immunogenicity of several TSAs and TAAs. Our study identified attractive targets for cancer immunotherapy in both breast cancer subtypes. The higher prevalence of TSAs in TNBC tumors provides a rationale for their responsiveness to checkpoint blockade.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Antígenos de Neoplasias/genética , Inmunoterapia/métodos , Linfocitos T CD8-positivos/patología
4.
Genome Biol ; 24(1): 188, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582761

RESUMEN

MHC-I-associated peptides deriving from non-coding genomic regions and mutations can generate tumor-specific antigens, including neoantigens. Quantifying tumor-specific antigens' RNA expression in malignant and benign tissues is critical for discriminating actionable targets. We present BamQuery, a tool attributing an exhaustive RNA expression to MHC-I-associated peptides of any origin from bulk and single-cell RNA-sequencing data. We show that many cryptic and mutated tumor-specific antigens can derive from multiple discrete genomic regions, abundantly expressed in normal tissues. BamQuery can also be used to predict MHC-I-associated peptides immunogenicity and identify actionable tumor-specific antigens de novo.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Antígenos de Neoplasias/genética , Antígenos de Histocompatibilidad Clase I , Neoplasias/genética , Péptidos/genética , ARN
5.
iScience ; 25(9): 104968, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36111255

RESUMEN

Based on analyses of TCR sequences from over 1,000 individuals, we report that the TCR repertoire is composed of two ontogenically and functionally distinct types of TCRs. Their production is regulated by variations in thymic output and terminal deoxynucleotidyl transferase (TDT) activity. Neonatal TCRs derived from TDT-negative progenitors persist throughout life, are highly shared among subjects, and are reported as disease-associated. Thus, 10%-30% of most frequent cord blood TCRs are associated with common pathogens and autoantigens. TDT-dependent TCRs present distinct structural features and are less shared among subjects. TDT-dependent TCRs are produced in maximal numbers during infancy when thymic output and TDT activity reach a summit, are more abundant in subjects with AIRE mutations, and seem to play a dominant role in graft-versus-host disease. Factors decreasing thymic output (age, male sex) negatively impact TCR diversity. Males compensate for their lower repertoire diversity via hyperexpansion of selected TCR clonotypes.

6.
Cell Rep ; 40(7): 111241, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977509

RESUMEN

Previous reports showed that mouse vaccination with pluripotent stem cells (PSCs) induces durable anti-tumor immune responses via T cell recognition of some elusive oncofetal epitopes. We characterize the MHC I-associated peptide (MAP) repertoire of human induced PSCs (iPSCs) using proteogenomics. Our analyses reveal a set of 46 pluripotency-associated MAPs (paMAPs) absent from the transcriptome of normal tissues and adult stem cells but expressed in PSCs and multiple adult cancers. These paMAPs derive from coding and allegedly non-coding (48%) transcripts involved in pluripotency maintenance, and their expression in The Cancer Genome Atlas samples correlates with source gene hypomethylation and genomic aberrations common across cancer types. We find that several of these paMAPs were immunogenic. However, paMAP expression in tumors coincides with activation of pathways instrumental in immune evasion (WNT, TGF-ß, and CDK4/6). We propose that currently available inhibitors of these pathways could synergize with immune targeting of paMAPs for the treatment of poorly differentiated cancers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias , Células Madre Pluripotentes , Animales , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Ratones , Neoplasias/metabolismo , Péptidos/metabolismo , Células Madre Pluripotentes/metabolismo
7.
Mol Cell Proteomics ; 21(5): 100228, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367648

RESUMEN

Colorectal cancer is the second leading cause of cancer death worldwide, and the incidence of this disease is expected to increase as global socioeconomic changes occur. Immune checkpoint inhibition therapy is effective in treating a minority of colorectal cancer tumors; however, microsatellite stable tumors do not respond well to this treatment. Emerging cancer immunotherapeutic strategies aim to activate a cytotoxic T cell response against tumor-specific antigens, presented exclusively at the cell surface of cancer cells. These antigens are rare and are most effectively identified with a mass spectrometry-based approach, which allows the direct sampling and sequencing of these peptides. Although the few tumor-specific antigens identified to date are derived from coding regions of the genome, recent findings indicate that a large proportion of tumor-specific antigens originate from allegedly noncoding regions. Here, we employed a novel proteogenomic approach to identify tumor antigens in a collection of colorectal cancer-derived cell lines and biopsy samples consisting of matched tumor and normal adjacent tissue. The generation of personalized cancer databases paired with mass spectrometry analyses permitted the identification of more than 30,000 unique MHC I-associated peptides. We identified 19 tumor-specific antigens in both microsatellite stable and unstable tumors, over two-thirds of which were derived from noncoding regions. Many of these peptides were derived from source genes known to be involved in colorectal cancer progression, suggesting that antigens from these genes could have therapeutic potential in a wide range of tumors. These findings could benefit the development of T cell-based vaccines, in which T cells are primed against these antigens to target and eradicate tumors. Such a vaccine could be used in tandem with existing immune checkpoint inhibition therapies, to bridge the gap in treatment efficacy across subtypes of colorectal cancer with varying prognoses. Data are available via ProteomeXchange with identifier PXD028309.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Antígenos de Neoplasias/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/métodos , Péptidos/genética
8.
Cell Rep ; 36(10): 109546, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496243

RESUMEN

The PSMB11 proteasomal subunit, expressed only in cortical thymic epithelial cells (cTECs), is essential for the development of functional CD8+ T cells. An attractive yet unproven theory holds that PSMB11 generates unique major histocompatibility complex class I (MHC I)-associated peptides required for positive selection. We recently reported that PSMB11 regulates the expression of hundreds of genes in cTECs, mainly by differential proteolysis of transcription factors. Thereby, PSMB11 maintains the distinctness of cTECs relative to medullary TECs (mTECs) and promotes cortex-to-medulla migration of developing thymocytes. These conclusions have been challenged by Ohigashi and colleagues, who suggest that their data show that PSMB11 uniquely controls antigen presentation without affecting cTEC biology. Here, we perform a comprehensive reanalysis of transcriptomic and proteomic data from the Ohigashi lab and confirm our original conclusions. This Matters Arising paper is in response to Ohigashi et al. (2019), published in Cell Reports. See also the response by Ohigashi and Takahama (2021), published in this issue of Cell Reports.


Asunto(s)
Linfocitos T CD8-positivos , Proteómica , Diferenciación Celular , Células Epiteliales , Expresión Génica
9.
Immunity ; 54(4): 737-752.e10, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33740418

RESUMEN

Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.


Asunto(s)
Epítopos/genética , Antígenos de Histocompatibilidad Clase I/genética , Leucemia Mieloide Aguda/genética , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Línea Celular , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Epítopos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunoterapia/métodos , Leucemia Mieloide Aguda/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mutación/genética , Mutación/inmunología , Células Madre Neoplásicas/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/inmunología
10.
Genome Med ; 12(1): 40, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345368

RESUMEN

BACKGROUND: Endogenous retroelements (EREs) constitute about 42% of the human genome and have been implicated in common human diseases such as autoimmunity and cancer. The dominant paradigm holds that EREs are expressed in embryonic stem cells (ESCs) and germline cells but are repressed in differentiated somatic cells. Despite evidence that some EREs can be expressed at the RNA and protein levels in specific contexts, a system-level evaluation of their expression in human tissues is lacking. METHODS: Using RNA sequencing data, we analyzed ERE expression in 32 human tissues and cell types, including medullary thymic epithelial cells (mTECs). A tissue specificity index was computed to identify tissue-restricted ERE families. We also analyzed the transcriptome of mTECs in wild-type and autoimmune regulator (AIRE)-deficient mice. Finally, we developed a proteogenomic workflow combining RNA sequencing and mass spectrometry (MS) in order to evaluate whether EREs might be translated and generate MHC I-associated peptides (MAP) in B-lymphoblastoid cell lines (B-LCL) from 16 individuals. RESULTS: We report that all human tissues express EREs, but the breadth and magnitude of ERE expression are very heterogeneous from one tissue to another. ERE expression was particularly high in two MHC I-deficient tissues (ESCs and testis) and one MHC I-expressing tissue, mTECs. In mutant mice, we report that the exceptional expression of EREs in mTECs was AIRE-independent. MS analyses identified 103 non-redundant ERE-derived MAPs (ereMAPs) in B-LCLs. These ereMAPs preferentially derived from sense translation of intronic EREs. Notably, detailed analyses of their amino acid composition revealed that ERE-derived MAPs presented homology to viral MAPs. CONCLUSIONS: This study shows that ERE expression in somatic tissues is more pervasive and heterogeneous than anticipated. The high and diversified expression of EREs in mTECs and their ability to generate MAPs suggest that EREs may play an important role in the establishment of self-tolerance. The viral-like properties of ERE-derived MAPs suggest that those not expressed in mTECs can be highly immunogenic.


Asunto(s)
Retroelementos , Secuencia de Aminoácidos , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Citocinas/farmacología , Células Dendríticas , Células Epiteliales/metabolismo , Humanos , Espectrometría de Masas , Ratones Noqueados , Análisis de Secuencia de ARN , Timo/citología , Factores de Transcripción/genética , Proteína AIRE
11.
Int J Cancer ; 147(7): 2000-2006, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32163592

RESUMEN

The THP-1 cell line is broadly used as a model for acute myeloid leukemia (AML) with MLL fusion and to study monocyte differentiation and function. We studied THP-1 cells obtained from two major biorepositories. The two cell lines were closely related with a percentage match of short tandem repeat (STR) profiles ranging from 93.75% to 100%, depending on the algorithm used. Nevertheless, we found that the two cell lines presented discordant HLA type, cytogenetic aberrations and AML-related gene expression (including critical targets of MLL fusion). These discrepancies resulted mainly from loss of heterozygosity (LOH) involving five chromosomal regions. In view of their aberrant expression of key "leukemia" genes (e.g., LIN28B, MEIS1 and SPARC), we argue that one of the THP-1 cell lines may not be a reliable model for studying leukemia. Their defective expression of HLA molecules and abnormal adhesion properties is also a caveat for studies of antigen presentation. In a more general perspective, our findings show that seemingly minor discrepancies in STR profiles among cell lines may be the sign of major genetic drift, of sufficient magnitude to affect the reliability of cell line-based research.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Repeticiones de Microsatélite , Proteína de la Leucemia Mieloide-Linfoide/genética , Células THP-1/citología , Algoritmos , Bancos de Muestras Biológicas , Adhesión Celular , Análisis Citogenético , Perfilación de la Expresión Génica , Prueba de Histocompatibilidad , Humanos , Pérdida de Heterocigocidad , Modelos Biológicos , Proteínas de Fusión Oncogénica/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Células THP-1/metabolismo
12.
J Proteome Res ; 19(4): 1873-1881, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32108478

RESUMEN

The immunopeptidome corresponds to the repertoire of peptides presented at the cell surface by the major histocompatibility complex (MHC) molecules. Cytotoxic T cells scan this repertoire to identify nonself antigens that can arise from tumors or infected cells. The identification of actionable antigenic targets is key to the development of therapeutic cancer vaccines, T-cell therapy, and other T-cell receptor-based biologics. The growing clinical interest for immunopeptidomics has accelerated the development of high throughput proteogenomic platforms that provide a system-level analysis of MHC-associated peptides. Improvement in sensitivity and throughput of mass spectrometers now allows the detection of a few thousands of peptides from less than 100 million cells. To manage the amount of data generated by these instruments, we have developed the MHC-associated peptide discovery platform (MAPDP), a novel open-source cloud-based computational platform for immunopeptidomic analyses. It provides convenient access from a web portal to immunopeptidomes stored in the database, filtering tools, various visualizations, annotations (e.g., IEDB, dbSNP, gnomAD), peptide-binding affinity prediction (mhcflurry, NetMHC), HLA genotyping, and the generation of personalized proteome databases. MAPDP functionalities are demonstrated here by the discovery of MHC peptides featuring new genetic variants identified in two previously published ovarian carcinoma data sets.


Asunto(s)
Nube Computacional , Neoplasias , Humanos , Espectrometría de Masas , Péptidos , Proteoma
13.
Cancer Immunol Res ; 8(4): 544-555, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32047025

RESUMEN

High-grade serous ovarian cancer (HGSC), the principal cause of death from gynecologic malignancies in the world, has not significantly benefited from advances in cancer immunotherapy. Although HGSC infiltration by lymphocytes correlates with superior survival, the nature of antigens that can elicit anti-HGSC immune responses is unknown. The goal of this study was to establish the global landscape of HGSC tumor-specific antigens (TSA) using a mass spectrometry pipeline that interrogated all reading frames of all genomic regions. In 23 HGSC tumors, we identified 103 TSAs. Classic TSA discovery approaches focusing only on mutated exonic sequences would have uncovered only three of these TSAs. Other mutated TSAs resulted from out-of-frame exonic translation (n = 2) or from noncoding sequences (n = 7). One group of TSAs (n = 91) derived from aberrantly expressed unmutated genomic sequences, which were not expressed in normal tissues. These aberrantly expressed TSAs (aeTSA) originated primarily from nonexonic sequences, in particular intronic (29%) and intergenic (22%) sequences. Their expression was regulated at the transcriptional level by variations in gene copy number and DNA methylation. Although mutated TSAs were unique to individual tumors, aeTSAs were shared by a large proportion of HGSCs. Taking into account the frequency of aeTSA expression and HLA allele frequencies, we calculated that, in Caucasians, the median number of aeTSAs per tumor would be five. We conclude that, in view of their number and the fact that they are shared by many tumors, aeTSAs may be the most attractive targets for HGSC immunotherapy.


Asunto(s)
Antígenos de Neoplasias/análisis , Biomarcadores de Tumor/análisis , Cistadenocarcinoma Seroso/patología , Inmunoterapia/métodos , Mutación , Neoplasias Ováricas/patología , Proteogenómica/métodos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo
14.
Sci Transl Med ; 10(470)2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518613

RESUMEN

Tumor-specific antigens (TSAs) represent ideal targets for cancer immunotherapy, but few have been identified thus far. We therefore developed a proteogenomic approach to enable the high-throughput discovery of TSAs coded by potentially all genomic regions. In two murine cancer cell lines and seven human primary tumors, we identified a total of 40 TSAs, about 90% of which derived from allegedly noncoding regions and would have been missed by standard exome-based approaches. Moreover, most of these TSAs derived from nonmutated yet aberrantly expressed transcripts (such as endogenous retroelements) that could be shared by multiple tumor types. Last, we demonstrated that, in mice, the strength of antitumor responses after TSA vaccination was influenced by two parameters that can be estimated in humans and could serve for TSA prioritization in clinical studies: TSA expression and the frequency of TSA-responsive T cells in the preimmune repertoire. In conclusion, the strategy reported herein could considerably facilitate the identification and prioritization of actionable human TSAs.


Asunto(s)
Antígenos de Neoplasias/metabolismo , ADN Intergénico/genética , Neoplasias/genética , Neoplasias/inmunología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Humanos , Inmunización , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Péptidos/química , Biosíntesis de Proteínas , Proteogenómica , Linfocitos T/inmunología
15.
Front Immunol ; 8: 1717, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29259606

RESUMEN

Thymic aging precedes that of other organs and is initiated by the gradual loss of thymic epithelial cells (TECs). Based on in vitro culture and transplantation assays, recent studies have reported on the presence of thymic epithelial progenitor cells (TEPCs) in young adult mice. However, the physiological role and properties of TEPC populations reported to date remain unclear. Using an in vivo label-retention assay, we previously identified a population of quiescent but non-senescent TECs. The goals of this study were therefore (i) to evaluate the contribution of these quiescent TECs to thymic regeneration following irradiation-induced acute thymic injury and (ii) to characterize their phenotypic and molecular profiles using flow cytometry, immunohistology, and transcriptome sequencing. We report that while UEA1+ cells cycle the most in steady state, they are greatly affected by irradiation, leading to cell loss and proliferative arrest following acute thymic involution. On the opposite, the UEA1- subset of quiescent TECs is radioresistant and proliferate in situ following acute thymic involution, thereby contributing to thymic regeneration in 28- to 30-week-old mice. UEA1- quiescent TECs display an undifferentiated phenotype (co-expression of K8 and K5 cytokeratins) and express high levels of genes that regulate stem cell activity in different tissues (e.g., Podxl and Ptprz1). In addition, two features suggest that UEA1- quiescent TECs occupy discrete stromal niches: (i) their preferential location in clusters adjacent to the cortico-medullary junction and (ii) their high expression of genes involved in cross talk with mesenchymal cells. The ability of UEA1- quiescent TECs to participate to TEC regeneration qualifies them as in vivo progenitor cells particularly relevant in the context of regeneration following acute thymic injury.

16.
J Clin Invest ; 126(12): 4690-4701, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27841757

RESUMEN

MHC class I-associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Genoma Humano/inmunología , Antígenos HLA-A , Antígenos HLA-B , Péptidos , Femenino , Antígenos HLA-A/genética , Antígenos HLA-A/inmunología , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Humanos , Masculino , Péptidos/genética , Péptidos/inmunología
17.
Nat Commun ; 7: 10238, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26728094

RESUMEN

In view of recent reports documenting pervasive translation outside of canonical protein-coding sequences, we wished to determine the proportion of major histocompatibility complex (MHC) class I-associated peptides (MAPs) derived from non-canonical reading frames. Here we perform proteogenomic analyses of MAPs eluted from human B cells using high-throughput mass spectrometry to probe the six-frame translation of the B-cell transcriptome. We report that ∼ 10% of MAPs originate from allegedly noncoding genomic sequences or exonic out-of-frame translation. The biogenesis and properties of these 'cryptic MAPs' differ from those of conventional MAPs. Cryptic MAPs come from very short proteins with atypical C termini, and are coded by transcripts bearing long 3'UTRs enriched in destabilizing elements. Relative to conventional MAPs, cryptic MAPs display different MHC class I-binding preferences and harbour more genomic polymorphisms, some of which are immunogenic. Cryptic MAPs increase the complexity of the MAP repertoire and enhance the scope of CD8 T-cell immunosurveillance.


Asunto(s)
Genes MHC Clase I/genética , Proteómica/métodos , Regulación de la Expresión Génica , Genotipo , Humanos , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sistemas de Lectura
18.
Pharmacol Rev ; 65(2): 545-77, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23406670

RESUMEN

Gßγ subunits from heterotrimeric G proteins perform a vast array of functions in cells with respect to signaling, often independently as well as in concert with Gα subunits. However, the eponymous term "Gßγ" does not do justice to the fact that 5 Gß and 12 Gγ isoforms have evolved in mammals to serve much broader roles beyond their canonical roles in cellular signaling. We explore the phylogenetic diversity of Gßγ subunits with a view toward understanding these expanded roles in different cellular organelles. We suggest that the particular content of distinct Gßγ subunits regulates cellular activity, and that the granularity of individual Gß and Gγ action is only beginning to be understood. Given the therapeutic potential of targeting Gßγ action, this larger view serves as a prelude to more specific development of drugs aimed at individual isoforms.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/fisiología , Subunidades gamma de la Proteína de Unión al GTP/fisiología , Transducción de Señal , Bibliotecas de Moléculas Pequeñas , Animales , Sitios de Unión , Descubrimiento de Drogas , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Humanos , Modelos Moleculares , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Filogenia , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad de la Especie
19.
Blood ; 119(26): e181-91, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22438248

RESUMEN

MHC I-associated peptides (MIPs) play an essential role in normal homeostasis and diverse pathologic conditions. MIPs derive mainly from defective ribosomal products (DRiPs), a subset of nascent proteins that fail to achieve a proper conformation and the physical nature of which remains elusive. In the present study, we used high-throughput proteomic and transcriptomic methods to unravel the structure and biogenesis of MIPs presented by HLA-A and HLA-B molecules on human EBV-infected B lymphocytes from 4 patients. We found that although HLA-different subjects present distinctive MIPs derived from different proteins, these MIPs originate from proteins that are functionally interconnected and implicated in similar biologic pathways. Secondly, the MIP repertoire of human B cells showed no bias toward conserved versus polymorphic genomic sequences, were derived preferentially from abundant transcripts, and conveyed to the cell surface a cell-type-specific signature. Finally, we discovered that MIPs derive preferentially from transcripts bearing miRNA response elements. Furthermore, whereas MIPs of HLA-disparate subjects are coded by different sets of transcripts, these transcripts are regulated by mostly similar miRNAs. Our data support an emerging model in which the generation of MIPs by a transcript depends on its abundance and DRiP rate, which is regulated to a large extent by miRNAs.


Asunto(s)
Presentación de Antígeno/genética , MicroARNs/metabolismo , Péptidos/genética , ARN Mensajero/química , ARN Mensajero/genética , Elementos de Respuesta/inmunología , Presentación de Antígeno/fisiología , Células Cultivadas , Perfilación de la Expresión Génica , Células HEK293 , Antígenos HLA-A/inmunología , Antígenos HLA-B/inmunología , Células HeLa , Humanos , MicroARNs/genética , Análisis por Micromatrices , Modelos Biológicos , Péptidos/química , Elementos de Respuesta/genética
20.
Blood ; 119(11): 2510-22, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22174158

RESUMEN

The stem cell-intrinsic model of self-renewal via asymmetric cell division (ACD) posits that fate determinants be partitioned unequally between daughter cells to either activate or suppress the stemness state. ACD is a purported mechanism by which hematopoietic stem cells (HSCs) self-renew, but definitive evidence for this cellular process remains open to conjecture. To address this issue, we chose 73 candidate genes that function within the cell polarity network to identify potential determinants that may concomitantly alter HSC fate while also exhibiting asymmetric segregation at cell division. Initial gene-expression profiles of polarity candidates showed high and differential expression in both HSCs and leukemia stem cells. Altered HSC fate was assessed by our established in vitro to in vivo screen on a subcohort of candidate polarity genes, which revealed 6 novel positive regulators of HSC function: Ap2a2, Gpsm2, Tmod1, Kif3a, Racgap1, and Ccnb1. Interestingly, live-cell videomicroscopy of the endocytic protein AP2A2 shows instances of asymmetric segregation during HSC/progenitor cell cytokinesis. These results contribute further evidence that ACD is functional in HSC self-renewal, suggest a role for Ap2a2 in HSC activity, and provide a unique opportunity to prospectively analyze progeny from HSC asymmetric divisions.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades alfa de Complejo de Proteína Adaptadora/metabolismo , División Celular Asimétrica/fisiología , Polaridad Celular/genética , Endocitosis/genética , Células Madre Hematopoyéticas/citología , Células Madre Neoplásicas/patología , Células Madre/citología , Complejo 2 de Proteína Adaptadora/antagonistas & inhibidores , Complejo 2 de Proteína Adaptadora/genética , Subunidades alfa de Complejo de Proteína Adaptadora/antagonistas & inhibidores , Subunidades alfa de Complejo de Proteína Adaptadora/genética , Animales , Biomarcadores/metabolismo , Western Blotting , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Citometría de Flujo , Perfilación de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/fisiología , Leucemia/metabolismo , Leucemia/patología , Ratones , Células Madre Neoplásicas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA