Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arthritis Res Ther ; 25(1): 158, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653557

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is one of the most prevalent and debilitating joint diseases worldwide. RA is characterized by synovial inflammation (synovitis), which is linked to the development of joint destruction. Magnetic resonance imaging and ultrasonography are widely being used to detect the presence and extent of synovitis. However, these techniques do not reveal the activation status of inflammatory cells such as macrophages that play a crucial role in synovitis and express CD64 (Fc gamma receptor (FcγR)I) which is considered as macrophage activation marker. OBJECTIVES: We aimed to investigate CD64 expression and its correlation with pro-inflammatory cytokines and pro-damaging factors in human-derived RA synovium. Furthermore, we aimed to set up a molecular imaging modality using a radiolabeled CD64-specific antibody as a novel imaging tracer that could be used to determine the extent and phenotype of synovitis using optical and nuclear imaging. METHODS: First, we investigated CD64 expression in synovium of early- and late-stage RA patients and studied its correlation with the expression of pro-inflammatory and tissue-damaging factors. Next, we conjugated an anti-CD64 antibody with IRDye 800CW and diethylenetriamine penta-acetic acid (DTPA; used for 111In labeling) and tested its binding on cultured THP1 cells, ex vivo RA synovium explants and its imaging potential in SCID mice implanted with human RA synovium explants obtained from RA patients who underwent total joint replacement. RESULTS: We showed that CD64 is expressed in synovium of early and late-stage RA patients and that FCGR1A/CD64 expression is strongly correlated with factors known to be involved in RA progression. Combined, this makes CD64 a useful marker for imaging the extent and phenotype of synovitis. We reported higher binding of the [111In]In-DTPA-IRDye 800CW anti-CD64 antibody to in vitro cultured THP1 monocytes and ex vivo RA synovium compared to isotype control. In human RA synovial explants implanted in SCID mice, the ratio of uptake of the antibody in synovium over blood was significantly higher when injected with anti-CD64 compared to isotype and injecting an excess of unlabeled antibody significantly reduced the antibody-binding associated signal, both indicating specific receptor binding. CONCLUSION: Taken together, we successfully developed an optical and nuclear imaging modality to detect CD64 in human RA synovium in vivo.


Asunto(s)
Artritis Reumatoide , Sinovitis , Ratones , Animales , Humanos , Ratones SCID , Imagen Molecular , Sinovitis/diagnóstico por imagen , Artritis Reumatoide/diagnóstico por imagen , Biomarcadores , Anticuerpos , Isotipos de Inmunoglobulinas , Ácido Pentético
2.
Eur J Nucl Med Mol Imaging ; 50(9): 2872-2884, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37060367

RESUMEN

PURPOSE: Incomplete resection of prostate cancer (PCa) results in increased risk of disease recurrence. Combined fluorescence-guided surgery with tumor-targeted photodynamic therapy (tPDT) may help to achieve complete tumor eradication. We developed a prostate-specific membrane antigen (PSMA) ligand consisting of a DOTA chelator for 111In labeling and a fluorophore/photosensitizer IRDye700DX (PSMA-N064). We evaluated the efficacy of PSMA-tPDT using PSMA-N064 in cell viability assays, a mouse xenograft model and in an ex vivo incubation study on fresh human PCa tissue. METHODS: In vitro, therapeutic efficacy of PSMA-N064 was evaluated using PSMA-positive LS174T cells and LS174T wild-type cells. In vivo, PSMA-N064-mediated tPDT was tested in immunodeficient BALB/c mice-bearing PSMA-positive LS174T xenografts. Tumor growth and survival were compared to control mice that received either NIR light or ligand injection only. Ex vivo tPDT efficacy was evaluated in excised fresh human PCa tissue incubated with PSMA-N064. RESULTS: In vitro, tPDT led to a PSMA-specific light- and ligand dose-dependent loss in cell viability. In vivo, tPDT-induced tumor cell apoptosis, delayed tumor growth, and significantly improved survival (p = 0.004) of the treated PSMA-positive tumor-bearing mice compared with the controls. In fresh ex vivo human PCa tissue, apoptosis was significantly increased in PSMA-tPDT-treated samples compared to non-treated control samples (p = 0.037). CONCLUSION: This study showed the feasibility of PSMA-N064-mediated tPDT in cell assays, a xenograft model and excised fresh human PCa tissue. This paves the way to investigate the impact of in vivo PSMA-tPDT on surgical outcome in PCa patients.


Asunto(s)
Fotoquimioterapia , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Medicina de Precisión , Ligandos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Glutamato Carboxipeptidasa II , Antígenos de Superficie , Fotoquimioterapia/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral
3.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982201

RESUMEN

Polyisocyanopeptide (PIC) hydrogels are proposed as promising wound dressings. These gels are thermo-sensitive, allow application as a cold liquid, and rely on gelation through body heat. It is supposed that the gel can be easily removed by reversing the gelation and washing it away with a cold irrigation solution. The impact on wound healing of the regular application and removal of PIC dressings is compared to a single application of PIC and the clinically used Tegaderm™ in murine splinted full-thickness wounds for up to 14 days. SPECT/CT analysis of 111In-labelled PIC gels showed that, on average, 58% of the PIC gel could be washed out of the wounds with the employed method, which is, however, heavily influenced by personal technique. Evaluation with photography and (immuno-)histology showed that wounds in which PIC dressings were regularly removed and replaced were smaller at 14 days post-injury but performed on par with the control treatment. Moreover, the encapsulation of PIC in wound tissue was less severe and occurred less often when PIC was regularly refreshed. In addition, no morphological damage related to the removal procedure was observed. Thus, PIC gels are atraumatic and perform similarly to currently employed wound dressing materials, offering possible future benefits for both clinicians and patients.


Asunto(s)
Hidrogeles , Cicatrización de Heridas , Humanos , Ratones , Animales , Vendajes , Alcohol Polivinílico , Povidona
4.
EJNMMI Radiopharm Chem ; 8(1): 6, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952073

RESUMEN

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field, and include new PET-labelling methods for 11C and 18F, the importance of choosing the proper chelator for a given radioactive metal ion, implications of total body PET on use of radiopharmaceuticals, legislation issues and radionuclide therapy including the emerging role of 161Tb.

5.
Pharmaceutics ; 15(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36986657

RESUMEN

The therapeutic potential of minigastrin (MG) analogs for the treatment of cholecystokinin-2 receptor (CCK2R)-expressing cancers is limited by poor in vivo stability or unfavorable accumulation in non-target tissues. Increased stability against metabolic degradation was achieved by modifying the C-terminal receptor-specific region. This modification led to significantly improved tumor targeting properties. In this study, further N-terminal peptide modifications were investigated. Two novel MG analogs were designed starting from the amino acid sequence of DOTA-MGS5 (DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1Nal-NH2). Introduction of a penta-DGlu moiety and replacement of the four N-terminal amino acids by a non-charged hydrophilic linker was investigated. Retained receptor binding was confirmed using two CCK2R-expressing cell lines. The effect on metabolic degradation of the new 177Lu-labeled peptides was studied in human serum in vitro, as well as in BALB/c mice in vivo. The tumor targeting properties of the radiolabeled peptides were assessed using BALB/c nude mice bearing receptor-positive and receptor-negative tumor xenografts. Both novel MG analogs were found to have strong receptor binding, enhanced stability, and high tumor uptake. Replacement of the four N-terminal amino acids by a non-charged hydrophilic linker lowered the absorption in the dose-limiting organs, whereas introduction of the penta-DGlu moiety increased uptake in renal tissue.

6.
EJNMMI Radiopharm Chem ; 7(1): 9, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471681

RESUMEN

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to update the readership on trends in the field of radiopharmaceutical development. RESULTS: This commentary of highlights has resulted in 23 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals and also a contribution in relation to MRI-agents is included. CONCLUSION: Trends in (radio)chemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry.

7.
Eur J Nucl Med Mol Imaging ; 49(10): 3353-3364, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35385986

RESUMEN

This document is intended as a supplement to the EANM "Guidelines on current Good Radiopharmacy Practice (cGRPP)" issued by the Radiopharmacy Committee of the EANM (Gillings et al. in EJNMMI Radiopharm Chem. 6:8, 2021). The aim of the EANM Radiopharmacy Committee is to provide a document that describes how to manage risks associated with small-scale "in-house" preparation of radiopharmaceuticals, not intended for commercial purposes or distribution.


Asunto(s)
Medicina Nuclear , Radiofármacos , Humanos , Radiofármacos/efectos adversos , Gestión de Riesgos
8.
Eur J Nucl Med Mol Imaging ; 49(7): 2425-2435, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35029739

RESUMEN

INTRODUCTION: The first generation ligands for prostate-specific membrane antigen (PSMA)-targeted radio- and fluorescence-guided surgery followed by adjuvant photodynamic therapy (PDT) have already shown the potential of this approach. Here, we developed three new photosensitizer-based dual-labeled PSMA ligands by crucial modification of existing PSMA ligand backbone structures (PSMA-1007/PSMA-617) for multimodal imaging and targeted PDT of PCa. METHODS: Various new PSMA ligands were synthesized using solid-phase chemistry and provided with a DOTA chelator for 111In labeling and the fluorophore/photosensitizer IRDye700DX. The performance of three new dual-labeled ligands was compared with a previously published first-generation ligand (PSMA-N064) and a control ligand with an incomplete PSMA-binding motif. PSMA specificity, affinity, and PDT efficacy of these ligands were determined in LS174T-PSMA cells and control LS174T wildtype cells. Tumor targeting properties were evaluated in BALB/c nude mice with subcutaneous LS174T-PSMA and LS174T wildtype tumors using µSPECT/CT imaging, fluorescence imaging, and biodistribution studies after dissection. RESULTS: In order to synthesize the new dual-labeled ligands, we modified the PSMA peptide linker by substitution of a glutamic acid into a lysine residue, providing a handle for conjugation of multiple functional moieties. Ligand optimization showed that the new backbone structure leads to high-affinity PSMA ligands (all IC50 < 50 nM). Moreover, ligand-mediated PDT led to a PSMA-specific decrease in cell viability in vitro (P < 0.001). Linker modification significantly improved tumor targeting compared to the previously developed PSMA-N064 ligand (≥ 20 ± 3%ID/g vs 14 ± 2%ID/g, P < 0.01) and enabled specific visualization of PMSA-positive tumors using both radionuclide and fluorescence imaging in mice. CONCLUSION: The new high-affinity dual-labeled PSMA-targeting ligands with optimized backbone compositions showed increased tumor targeting and enabled multimodal image-guided PCa surgery combined with targeted photodynamic therapy.


Asunto(s)
Fotoquimioterapia , Neoplasias de la Próstata , Animales , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Ligandos , Masculino , Ratones , Ratones Desnudos , Imagen Multimodal , Fármacos Fotosensibilizantes/uso terapéutico , Medicina de Precisión , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/terapia , Distribución Tisular
9.
Rheumatology (Oxford) ; 61(7): 2999-3009, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34450633

RESUMEN

OBJECTIVE: Activated synovial fibroblasts are key effector cells in RA. Selectively depleting these based upon their expression of fibroblast activation protein (FAP) is an attractive therapeutic approach. Here we introduce FAP imaging of inflamed joints using 68Ga-FAPI-04 in a RA patient, and aim to assess feasibility of anti-FAP targeted photodynamic therapy (FAP-tPDT) ex vivo using 28H1-IRDye700DX on RA synovial explants. METHODS: Remnant synovial tissue from RA patients was processed into 6 mm biopsies and, from several patients, into primary fibroblast cell cultures. Both were treated using FAP-tPDT. Cell viability was measured in fibroblast cultures and biopsies were evaluated for histological markers of cell damage. Selectivity of the effect of FAP-tPDT was assessed using flow cytometry on primary fibroblasts and co-cultured macrophages. Additionally, one RA patient intravenously received 68Ga-FAPI-04 and was scanned using PET/CT imaging. RESULTS: In the RA patient, FAPI-04 PET imaging showed high accumulation of the tracer in arthritic joints with very low background signal. In vitro, FAP-tPDT induced cell death in primary RA synovial fibroblasts in a light dose-dependent manner. An upregulation of cell damage markers was observed in the synovial biopsies after FAP-tPDT. No significant effects of FAP-tPDT were noted on macrophages after FAP-tPDT of neighbouring fibroblasts. CONCLUSION: In this study the feasibility of selective FAP-tPDT in synovium of rheumatoid arthritis patients ex vivo is demonstrated. Furthermore, this study provides the first indication that FAP-targeted PET/CT can be used to image arthritic joints, an important step towards application of FAP-tPDT as a targeted locoregional therapy for RA.


Asunto(s)
Artritis Reumatoide , Fotoquimioterapia , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Membrana Sinovial/metabolismo
10.
Bioconjug Chem ; 33(1): 194-205, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34957825

RESUMEN

Strain-promoted azide-alkyne cycloaddition (SPAAC) is a straightforward and multipurpose conjugation strategy. The use of SPAAC to link different functional elements to prostate-specific membrane antigen (PSMA) ligands would facilitate the development of a modular platform for PSMA-targeted imaging and therapy of prostate cancer (PCa). As a first proof of concept for the SPAAC chemistry platform, we synthesized and characterized four dual-labeled PSMA ligands for intraoperative radiodetection and fluorescence imaging of PCa. Ligands were synthesized using solid-phase chemistry and contained a chelator for 111In or 99mTc labeling. The fluorophore IRDye800CW was conjugated using SPAAC chemistry or conventional N-hydroxysuccinimide (NHS)-ester coupling. Log D values were measured and PSMA specificity of these ligands was determined in LS174T-PSMA cells. Tumor targeting was evaluated in BALB/c nude mice with subcutaneous LS174T-PSMA and LS174T wild-type tumors using µSPECT/CT imaging, fluorescence imaging, and biodistribution studies. SPAAC chemistry increased the lipophilicity of the ligands (log D range: -2.4 to -4.4). In vivo, SPAAC chemistry ligands showed high and specific accumulation in s.c. LS174T-PSMA tumors up to 24 h after injection, enabling clear visualization using µSPECT/CT and fluorescence imaging. Overall, no significant differences between the SPAAC chemistry ligands and their NHS-based counterparts were found (2 h p.i., p > 0.05), while 111In-labeled ligands outperformed the 99mTc ligands. Here, we demonstrate that our newly developed SPAAC-based PSMA ligands show high PSMA-specific tumor targeting. The use of click chemistry in PSMA ligand development opens up the opportunity for fast, efficient, and versatile conjugations of multiple imaging moieties and/or drugs.


Asunto(s)
Azidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...