RESUMEN
Single-cell RNA-sequencing (scRNA-seq) is a powerful technique that can barcode individual cells and thus used to obtain a gene expression profile for every individual cell within a tissue. This makes scRNA-seq an excellent method for characterizing rare cell populations such as stem cells. We describe how scRNA-seq can be utilized to examine limbal epithelial stem cell population as well as investigate the contribution of autophagy to the function of limbal epithelial stem cells. To accomplish this, we used the Beclin1 heterozygous (Beclin1 het) mouse, a well-established model of autophagy deficiency. We provide a protocol that we developed for the isolation of viable, single-cell suspensions of limbal/corneal tissues, as well as the analysis of scRNA-seq data.
RESUMEN
Limbal epithelial stem cells are not only critical for corneal epithelial homeostasis but also have the capacity to change from a relatively quiescent mitotic phenotype to a rapidly proliferating cell in response to population depletion following corneal epithelial wounding. Pax6+/- mice display many abnormalities including corneal vascularization and these aberrations are consistent with a limbal stem cell deficiency (LSCD) phenotype. FoxC1 has an inhibitory effect on corneal avascularity and a positive role in stem cell maintenance in many tissues. However, the role of FoxC1 in limbal epithelial stem cells remains unknown. To unravel FoxC1's role(s) in limbal epithelial stem cell homeostasis, we utilized an adeno-associated virus (AAV) vector to topically deliver human FOXC1 proteins into Pax6 +/- mouse limbal epithelium. Under unperturbed conditions, overexpression of FOXC1 in the limbal epithelium had little significant change in differentiation (PAI-2, Krt12) and proliferation (BrdU, Ki67). Conversely, such overexpression resulted in a marked increase in the expression of putative limbal epithelial stem cell markers, N-cadherin and Lrig1. After corneal injuries in Pax6 +/- mice, FOXC1 overexpression enhanced the behavior of limbal epithelial stem cells from quiescence to a highly proliferative status. Overall, the treatment of AAV8-FOXC1 may be beneficial to the function of limbal epithelial stem cells in the context of a deficiency of Pax6 function.
Asunto(s)
Enfermedades de la Córnea , Epitelio Corneal , Limbo de la Córnea , Animales , Humanos , Ratones , Córnea , Enfermedades de la Córnea/metabolismo , Desbridamiento , Células Epiteliales , Epitelio Corneal/metabolismo , Limbo de la Córnea/metabolismo , Células MadreRESUMEN
A distinct boundary exists between the progenitor cells in the basal limbal epithelium and the more differentiated corneal epithelial basal cells. We have shown that reciprocal expression patterns of EphA2 and Ephrin-A1 are likely to contribute to normal limbal-corneal epithelial compartmentalization as well as play a role in response to injury. How this signaling axis is regulated remains unclear. We have demonstrated that microRNAs (miRNAs) play critical roles in corneal epithelial wound healing and several miRNAs (e.g. miR-210) have been predicted to target ephrins. Previous expression profiling experiments demonstrated that miR-210 is prominently expressed in corneal epithelial cells. RNA-seq data acquired from miR-210-depleted HCECs showed up-regulation of genes involved in cellular migration. In addition, miR-210 is decreased after corneal injury while EphA2 is increased. Moreover, antago-210-treated HCECs markedly enhanced wound closure in a scratch wound assay. Antago-210 treatment resulted in increased EphA2 protein levels as well as pS897-EphA2, the pro-migratory form of EphA2. As expected, Ephrin-A1 levels were reduced, while levels of a well-known target of miR-210, Ephrin-A3, were increased by antago-210 treatment. The increase in migration with antago-210 could be inhibited by Ephrin-A1 overexpression, Ephrin-A1-Fc treatment or siRNA depletion of EphA2. However, depletion of Ephrin-A3 did not have effects on the antago-210-induced increase in migration. In addition, Ephrin-A1 overexpression and siEphA2 dampened EGFR signaling, which is increased by antago-210. Our data clearly demonstrate a link between miR-210 and EphA2/Ephrin-A1 signaling that regulates, in part, corneal epithelial migration. This interaction might potentially control the limbal-corneal epithelial boundary.
Asunto(s)
Movimiento Celular , Córnea/metabolismo , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Receptores de la Familia Eph/metabolismo , Humanos , MicroARNs/genética , RNA-Seq , Receptores de la Familia Eph/genéticaRESUMEN
PURPOSE: To understand the relationship between ciliogenesis and autophagy in the corneal epithelium. METHODS: siRNAs for EphA2 or PLD1 were used to inhibit protein expression in vitro. Morpholino-anti-EphA2 was used to knockdown EphA2 in Xenopus skin. An EphA2 knockout mouse was used to conduct loss of function studies. Autophagic vacuoles were visualized by contrast light microscopy. Autophagy flux, was measured by LC3 turnover and p62 protein levels. Immunostaining and confocal microscopy were conducted to visualize cilia in cultured cells and in vivo. RESULTS: Loss of EphA2 (i) increased corneal epithelial thickness by elevating proliferative potential in wing cells, (ii) reduced the number of ciliated cells, (iii) increased large hollow vacuoles, that could be rescued by BafA1; (iv) inhibited autophagy flux and (v) increased GFP-LC3 puncta in the mouse corneal epithelium. This indicated a role for EphA2 in stratified epithelial assembly via regulation of proliferation as well as a positive role in both ciliogenesis and end-stage autophagy. Inhibition of PLD1, an EphA2 interacting protein that is a critical regulator of end-stage autophagy, reversed the accumulation of vacuoles, and the reduction in the number of ciliated cells due to EphA2 depletion, suggesting EphA2 regulation of both end-stage autophagy and ciliogenesis via PLD1. PLD1 mediated rescue of ciliogenesis by EphA2 depletion was blocked by BafA1, placing autophagy between EphA2 signaling and regulation of ciliogenesis. CONCLUSION: Our findings demonstrate a novel role for EphA2 in regulating both autophagy and ciliogenesis, processes that are essential for proper corneal epithelial homeostasis.
Asunto(s)
Autofagia , Epitelio Corneal , Animales , Células Cultivadas , Cilios , RatonesRESUMEN
Medicine has been a great beneficiary of the nanotechnology revolution. Nanotechnology involves the synthesis of functional materials with at least one size dimension between 1 and 100 nm. Advances in the field have enabled the synthesis of bio-nanoparticles that can interface with physiological systems to modulate fundamental cellular processes. One example of a diverse acting nanoparticle-based therapeutic is synthetic high-density lipoprotein (HDL) nanoparticles (NP), which have great potential for treating diseases of the ocular surface. Our group has developed a spherical HDL NP using a gold nanoparticle core. HDL NPs: (i) closely mimic the physical and chemical features of natural HDLs; (ii) contain apoA-I; (iii) bind with high-affinity to SR-B1, which is the major receptor through which HDL modulates cell cholesterol metabolism and controls the selective uptake of HDL cargo into cells; (iv) are non-toxic to cells and tissues; and (v) can be chemically engineered to display nearly any surface or core composition desired. With respect to the ocular surface, topical application of HDL NPs accelerates re-epithelization of the cornea following wounding, attenuates inflammation resulting from chemical burns and/or other stresses, and effectively delivers microRNAs with biological activity to corneal cells and tissues. HDL NPs will be the foundation of a new class of topical eye drops with great translational potential and exemplify the impact that nanoparticles can have in medicine.
Asunto(s)
Lipoproteínas HDL , Nanopartículas del Metal , Colesterol , OroRESUMEN
Angiotensin converting enzyme 2 (ACE2), a component of the renin-angiotensin system (RAS), has been identified as the receptor for the SARS-CoV-2. Several RAS components including ACE2 and its substrate Ang II are present in both eye and skin, two stratified squamous epithelial tissues that isolate organisms from external environment. Our recent findings in cornea and others in both skin and eye suggest contribution of this system, and specifically of ACE2 in variety of physiological and pathological responses of these organ systems. This review will focus on the role RAS system plays in both skin and cornea, and will specifically discuss our recent findings on ACE2 in corneal epithelial inflammation, as well as potential implications of ACE2 in patients with COVID-19.
Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Epitelio Corneal/enzimología , Receptores de Coronavirus/metabolismo , Piel/enzimología , Autofagia , COVID-19/enzimología , COVID-19/virología , Humanos , Inflamación/enzimología , Sistema Renina-Angiotensina/fisiología , Cicatrización de HeridasRESUMEN
Angiotensin converting enzyme 2 (ACE2) plays an important role in inflammation, which is attributable at least, in part, to the conversion of the pro-inflammatory angiotensin (Ang) II peptide into angiotensin 1-7 (Ang 1-7), a peptide which opposes the actions of AngII. ACE2 and AngII are present in many tissues but information on the cornea is lacking. We observed that mice deficient in the Ace2 gene (Ace2-/- ), developed a cloudy cornea phenotype as they aged. Haze occupied the central cornea, accompanied by corneal edema and neovascularization. In severe cases with marked chronic inflammation, a cell-fate switch from a transparent corneal epithelium to a keratinized, stratified squamous, psoriasiform-like epidermis was observed. The stroma contained a large number of CD11c, CD68, and CD3 positive cells. Corneal epithelial debridement experiments in young ACE2-deficient mice showed normal appearing corneas, devoid of haze. We hypothesized, however, that these mice are "primed" for a corneal inflammatory response, which once initiated, would persist. In vitro studies reveal that interleukins (IL-1a, IL-1b), chemokines (CCL2, CXCL8), and TNF-α, are all significantly elevated, resulting in a cytokine storm-like phenotype. This phenotype could be partially rescued by treatment with the AngII type 1 receptor (AT1R) antagonist, losartan, suggesting that the observed effect was mediated by AngII acting on its main receptor. Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes human ACE2 as the receptor for entry with subsequent downregulation of ACE2, corneal inflammation in Ace2-/- mice may have a similar mechanism with that in COVID-19 patients. Thus the Ace2-/- cornea, because of easy accessibility, may provide an attractive model to explore the molecular mechanisms, immunological changes, and treatment modalities in patients with COVID-19.
Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Córnea/patología , Síndrome de Liberación de Citoquinas/fisiopatología , Modelos Animales de Enfermedad , Angiotensina II/metabolismo , Animales , COVID-19 , Células Cultivadas , Quimiocinas/metabolismo , Células Epiteliales/metabolismo , Humanos , Interleucinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , SARS-CoV-2 , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The anterior surface of the eye functions as a barrier to the external environment and protects the delicate underlying tissues from injury. Central to this protection are the corneal, limbal and conjunctival epithelia. The corneal epithelium is a self-renewing stratified squamous epithelium that protects the underlying delicate structures of the eye, supports a tear film and maintains transparency so that light can be transmitted to the interior of the eye (Basu et al., 2014; Cotsarelis et al., 1989; Funderburgh et al., 2016; Lehrer et al., 1998; Pajoohesh-Ganji and Stepp, 2005; Parfitt et al., 2015; Peng et al., 2012b; Stepp and Zieske, 2005). In this review, dedicated to James Funderburgh and his contributions to visual science, in particular the limbal niche, corneal stroma and corneal stromal stem cells, we will focus on recent data on the identification of novel regulators in corneal epithelial cell biology, their roles in stem cell homeostasis, wound healing, limbal/corneal boundary maintenance and the utility of single cell RNA sequencing (scRNA-seq) in vision biology studies.
Asunto(s)
Enfermedades de la Córnea/metabolismo , Epitelio Corneal/metabolismo , Células Madre/citología , Cicatrización de Heridas , Autofagia , Enfermedades de la Córnea/patología , Epitelio Corneal/patología , HumanosRESUMEN
Whereas much is known about the genes regulated by ΔNp63α in keratinocytes, how ΔNp63α is regulated is less clear. During studies with the hydroxylase, factor inhibiting hypoxia-inducible factor 1 (FIH-1), we observed increases in epidermal ΔNp63α expression along with proliferative capacity in a conditional FIH-1 transgenic mouse. Conversely, loss of FIH-1 in vivo and in vitro attenuated ΔNp63α expression. To elucidate the FIH-1/p63 relationship, BioID proteomics assays identified FIH-1 binding partners that had the potential to regulate p63 expression. FIH-1 interacts with two previously unknown partners, Plectin1 and signal transducer and activator of transcription 1 (STAT1) leading to the regulation of ΔNp63α expression. Two known interactors of FIH-1, apoptosis-stimulating of P53 protein 2 (ASPP2) and histone deacetylase 1 (HDAC1), were also identified. Knockdown of ASPP2 upregulated ΔNp63α and reversed the decrease in ΔNp63α by FIH-1 depletion. Additionally, FIH-1 regulates growth arrest and DNA damage-45 alpha (GADD45α), a negative regulator of ΔNp63α by interacting with HDAC1. GADD45α knockdown rescued reduction in ΔNp63α by FIH-1 depletion. Collectively, our data reveal that FIH-1 positively regulates ΔNp63α in keratinocytes via variety of signaling partners: (a) Plectin1/STAT1, (b) ASPP2, and (c) HDAC1/GADD45α signaling pathways.
Asunto(s)
Proteínas Portadoras/metabolismo , Proliferación Celular , Células Epiteliales/citología , Queratinocitos/citología , Proteínas de la Membrana/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteoma/metabolismo , Proteínas Represoras/metabolismo , Animales , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Queratinocitos/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Oxigenasas de Función Mixta/genética , Proteoma/análisis , Proteínas Represoras/genéticaRESUMEN
microRNAs regulate numerous biological processes, making them potential therapeutic agents. Problems with delivery and stability of these molecules have limited their usefulness as treatments. We demonstrate that synthetic high-density lipoprotein nanoparticles (HDL NPs) topically applied to the intact ocular surface are taken up by epithelial and stromal cells. microRNAs complexed to HDL NPs (miR-HDL NPs) are similarly taken up by cells and tissues and retain biological activity. Topical treatment of diabetic mice with either HDL NPs or miR-HDL NPs significantly improved corneal re-epithelialization following wounding compared with controls. Mouse corneas with alkali burn-induced inflammation, topically treated with HDL NPs, displayed clinical, morphological and immunological improvement. These results should yield a novel HDL NP-based eye drop for patients with compromised wound healing ability (diabetics) and/or corneal inflammatory diseases (e.g. dry eye).
RESUMEN
Purpose: Single-cell RNA-sequencing (scRNA-seq) was used to interrogate the relatively rare stem (SC) and early transit amplifying (TA) cell populations in limbal/corneal epithelia from wild-type and autophagy-compromised mice. Methods: We conducted scRNA-seq on ocular anterior segmental tissue from wild-type and beclin 1-deficient (beclin1+/-) mice, using a 10X Gemomics pipeline. Cell populations were distinguished by t-distributed stochastic neighbor embedding. Seurat analysis was conducted to compare gene expression profiles between these two groups of mice. Differential protein expression patterns were validated by immunofluorescence staining and immunoblotting. Results: Unbiased clustering detected 10 distinct populations: three clusters of mesenchymal and seven clusters of epithelial cells, based on their unique molecular signatures. A discrete group of mesenchymal cells expressed genes associated with corneal stromal SCs. We identified three limbal/corneal epithelial cell subpopulations designated as stem/early TA, mature TA, and differentiated corneal epithelial cells. Thioredoxin-interacting protein and PDZ-binding kinase (PBK) were identified as novel regulators of stem/early TA cell quiescence. PBK arrested corneal epithelial cells in G2/M phase of the cell cycle. Beclin1+/- mice displayed a decrease in proliferation-associated (Ki67, Lrig1) and stress-response (H2ax) genes. The most increased gene in beclin1+/- mice was transcription factor ATF3, which negatively regulates limbal epithelial cell proliferation. Conclusions: Establishment of a comprehensive atlas of genes expressed by stromal and epithelial cells from limbus and cornea forms the foundation for unraveling regulatory networks among these distinct tissues. Similarly, scRNA-seq profiling of the anterior segmental epithelia from wild-type and autophagy-deficient mice provides new insights into how autophagy influences proliferation in these tissues.
Asunto(s)
Autofagia/fisiología , Epitelio Corneal/citología , Limbo de la Córnea/citología , Células Madre Mesenquimatosas/citología , ARN/genética , Transcriptoma/genética , Animales , Beclina-1/fisiología , Biomarcadores/metabolismo , Recuento de Células , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Epitelio Corneal/metabolismo , Femenino , Inmunohistoquímica , Limbo de la Córnea/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARNRESUMEN
Identification and characterization of the limbal epithelial stem cells (LESCs) has proven to be a major accomplishment in anterior ocular surface biology. These cells have been shown to be a subpopulation of limbal epithelial basal cells, which serve as the progenitor population of the corneal epithelium. LESCs have been demonstrated to play an important role in maintaining corneal epithelium homeostasis. Many ocular surface diseases, including intrinsic (e.g., Sjogren's syndrome) or extrinsic (e.g., alkali or thermal burns) insults, which impair LESCs, can lead to limbal stem cell deficiency (LSCD). LSCD is characterized by an overgrowth of conjunctival-derived epithelial cells, corneal neovascularization, and chronic inflammation, eventually leading to blindness. Treatment of LSCD has been challenging, especially in bilateral total LSCD. Recently, advances in LESC research have led to novel therapeutic approaches for treating LSCD, such as transplantation of the cultured limbal epithelium. These novel therapeutic approaches have demonstrated efficacy for ocular surface reconstruction and restoration of vision in patients with LSCD. However, they all have their own limitations. Here, we describe the current status of LSCD treatment and discuss the advantages and disadvantages of the available therapeutic modalities.
RESUMEN
OBJECTIVE: A group of experts in dermatology, genetics, neuroscience, and regenerative medicine collaborated to summarize current knowledge on the defined factors contributing to cutaneous neurofibroma (cNF) development and to provide consensus recommendations for future research priorities to gain an improved understanding of the biology of cNF. METHODS: The group members reviewed published and unpublished data on cNF and related diseases via literature search, defined a set of key topic areas deemed critical in cNF pathogenesis, and developed recommendations in a series of consensus meetings. RESULTS: Five specific topic areas were identified as being relevant to providing an enhanced understanding of the biology of cNF: (1) defining the human cells of origin; (2) understanding the role of the microenvironment, focusing on neurons, mast cells, and fibroblasts; (3) defining the genetic and molecular differences between the cNFs, focusing on size and number; (4) understanding if sex hormones are critical for cNF development or progression; and (5) identifying challenges in establishing in vitro and in vivo models representing human cNF. CONCLUSIONS: The complexity of cNF biology stems from its heterogeneity at multiple levels including genetic, spatial involvement, temporal development, and cellular composition. We propose a unified working model for cNF that builds a framework to address the key questions about cNF that, when answered, will provide the necessary understanding of cNF biology to allow meaningful development of therapies.
Asunto(s)
Neurofibroma/fisiopatología , Neurofibromatosis 1/fisiopatología , Neoplasias Cutáneas/fisiopatología , Animales , Conferencias de Consenso como Asunto , Humanos , Neurofibroma/complicaciones , Neurofibroma/genética , Neurofibromatosis 1/complicaciones , Neurología , Investigación , Neoplasias Cutáneas/complicaciones , Neoplasias Cutáneas/genética , Microambiente TumoralRESUMEN
EphA2 receptor tyrosine kinase is activated by ephrin-A1 ligand, which harbors a glycosylphosphatidylinositol anchor that enhances lipid raft localization. Although EphA2 and ephrin-A1 modulate keratinocyte migration and differentiation, the ability of this cell-cell communication complex to localize to different membrane regions in keratinocytes remains unknown. Using a combination of biochemical and imaging approaches, we provide evidence that ephrin-A1 and a ligand-activated form of EphA2 partition outside of lipid raft domains in response to calcium-mediated cell-cell contact stabilization in normal human epidermal keratinocytes. EphA2 transmembrane domain swapping with a shorter and molecularly distinct transmembrane domain of EphA1 resulted in decreased localization of this receptor tyrosine kinase at cell-cell junctions and increased expression of ephrin-A1, which is a negative regulator of keratinocyte migration. Accordingly, altered EphA2 membrane distribution at cell-cell contacts limited the ability of keratinocytes to seal linear scratch wounds in vitro in an ephrin-A1-dependent manner. Collectively, these studies highlight a key role for the EphA2 transmembrane domain in receptor-ligand membrane distribution at cell-cell contacts that modulates ephrin-A1 levels to allow for efficient keratinocyte migration with relevance for cutaneous wound healing.
Asunto(s)
Efrina-A1/metabolismo , Efrina-A2/genética , Epidermis/metabolismo , Regulación de la Expresión Génica , Queratinocitos/patología , ARN/genética , Heridas y Lesiones/genética , Western Blotting , Comunicación Celular , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Efrina-A2/biosíntesis , Epidermis/patología , Humanos , Recién Nacido , Queratinocitos/metabolismo , Masculino , Reacción en Cadena de la Polimerasa , Receptor EphA2 , Transducción de Señal , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patologíaRESUMEN
Purpose: Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal-corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium. This reciprocal pattern led us to assess the role of ephrin-A1 and EphA2 in limbal-corneal epithelial boundary organization. Methods: EphA2-expressing corneal epithelial cells engineered to express ephrin-A1 were used to study boundary formation in vitro in a manner that mimicked the relative abundance of these juxtamembrane signaling proteins in the limbal and corneal epithelium in vivo. Interaction of these two distinct cell populations following initial seeding into discrete culture compartments was assessed by live cell imaging. Immunofluoresence and immunoblotting was used to evaluate the contribution of downstream growth factor signaling and cell-cell adhesion systems to boundary formation at sites of heterotypic contact between ephrin-A1 and EphA2 expressing cells. Results: Ephrin-A1-expressing cells impeded and reversed the migration of EphA2-expressing corneal epithelial cells upon heterotypic contact formation leading to coordinated migration of the two cell populations in the direction of an ephrin-A1-expressing leading front. Genetic silencing and pharmacologic inhibitor studies demonstrated that the ability of ephrin-A1 to direct migration of EphA2-expressing cells depended on an a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and epidermal growth factor receptor (EGFR) signaling pathway that limited E-cadherin-mediated adhesion at heterotypic boundaries. Conclusions: Ephrin-A1/EphA2 signaling complexes play a key role in limbal-corneal epithelial compartmentalization and the response of these tissues to injury.
Asunto(s)
Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Compartimento Celular/fisiología , Efrina-A1/fisiología , Efrina-A2/fisiología , Epitelio Corneal/citología , Receptores ErbB/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal/fisiología , Animales , Western Blotting , Comunicación Celular/fisiología , Células Cultivadas , Epitelio Corneal/metabolismo , Expresión Génica/fisiología , Silenciador del Gen/fisiología , Humanos , Inmunohistoquímica , Limbo de la Córnea/citología , Limbo de la Córnea/metabolismo , Ratones , Ratones Endogámicos BALB C , Receptor EphA2/fisiología , Células Madre/citologíaRESUMEN
Pemphigus consists of a group of chronic blistering skin diseases mediated by autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte dissociation (acantholysis) as a distinctive and direct consequence of the presence of autoAb targeting two main proteins of the desmosome-desmoglein (DSG) 1 and/or DSG3-has been put to the test. Several outside-in signaling events elicited by pemphigus autoAb in keratinocytes have been described, among which stands out p38 mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on keratinocytes. The role of apoptosis in the disease is, however, debatable, to an extent that it may not be a determinant event for the occurrence of acantholysis. Also, it has been verified that compromised DSG trans-interaction does not lead to keratinocyte dissociation when p38 MAPK is inhibited. These examples of conflicting results have been followed by recent work revealing an important role for endoplasmic reticulum (ER) stress in pemphigus' pathogenesis. ER stress is known to activate the p38 MAPK pathway, and vice versa. However, this relationship has not yet been studied in the context of activated signaling pathways in pemphigus. Therefore, by reviewing and hypothetically connecting the role(s) of ER stress and p38 MAPK pathway in pemphigus, we highlight the importance of elucidating the crosstalk between all activated signaling pathways, which may in turn contribute for a better understanding of the role of apoptosis in the disease and a better management of this life-threatening condition.
RESUMEN
Macroautophagy/autophagy is vital for cellular homeostasis and helps cells respond to various stress situations. Macropinocytosis enables cells to nonselectively engulf and take up large volumes of fluid and is known to supply amino acids to cells. The stem cell-enriched limbal epithelium has the machinery necessary to carry out both autophagy and macropinocytosis; however, both processes are relatively understudied in this tissue. We have demonstrated that these processes are linked via MIR103-MIR107, a microRNA family that is limbal epithelial-preferred. Loss of MIR103-MIR107 causes the accumulation of large vacuoles that originate, in part, from a dysregulation in macropinocytosis via activation of SRC-RAS signaling. We found that these vacuoles were autophagic in nature and retained in cells due to inappropriate regulation of end-stage autophagy. Specifically, MIR103-MIR107 regulates diacylglycerol-PRKC/protein kinase C and CDK5 (cyclin dependent kinase 5) signaling, which enables DNM1 (dynamin 1) to function in vacuole clearance.
Asunto(s)
Autofagia/fisiología , Células Epiteliales/metabolismo , Pinocitosis/fisiología , Células Madre/citología , Vacuolas/metabolismo , Animales , Humanos , MicroARNs/metabolismoRESUMEN
Autophagy and macropinocytosis are processes that are vital for cellular homeostasis, and help cells respond to stress and take up large amounts of material, respectively. The limbal and corneal epithelia have the machinery necessary to carry out both processes; however, autophagy and macropinocytosis are relatively understudied in these two epithelia. In this Perspectives, we describe the basic principles behind macropinocytosis and autophagy, discuss how these two processes are regulated in the limbal and corneal epithelia, consider how these two processes impact on the physiology of limbal and corneal epithelia, and elaborate on areas of future research in autophagy and macropinocytosis as related to the limbal/corneal epithelia.
Asunto(s)
Autofagia , Epitelio Corneal/metabolismo , Limbo de la Córnea/metabolismo , Pinocitosis/fisiología , Animales , Epitelio Corneal/citología , Humanos , Limbo de la Córnea/citologíaRESUMEN
Corneal avascularity is critical for achieving transparency necessary for proper transmission of light to the lens and visual acuity. Although much is known about angiogenesis and angiostasis, the precise regulation of these processes in the cornea is unclear. MicroRNA (miR)-184, the most abundant corneal epithelial miRNA, has been suggested to function in corneal angiostasis by altering VEGF signaling; however, the mechanism(s) underlying this regulation have not been addressed. Using a combination of in vitro and in vivo assays to evaluate angiogenesis, we demonstrated that human limbal epithelial keratinocytes (HLEKs) engineered to overexpress miR-184 secreted lower amounts of angiogenic mitogens. Human dermal microvascular cells exposed to conditioned medium from miR-184-overexpressing HLEKs were less proliferative and failed to seal linear scratch wounds. The in vivo Matrigel plug assay showed that conditioned medium from miR-184-expressing HLEKs elicited a lesser degree of neovascularization compared with controls. We found that miR-184 directly targets and represses the proangiogenic factors, friend of Gata 2 (FOG2), platelet-derived growth factor (PDGF)-ß, and phosphatidic acid phosphatase 2b (PPAP2B). FOG2 regulates VEGF expression, whereas PDGF-ß and PPAP2B regulate Akt activity. By attenuating both VEGF and Akt signaling, miR-184 acts as a broad-spectrum negative regulator of corneal angiogenesis.-Park, J. K., Peng, H., Yang, W., Katsnelson, J., Volpert, O., Lavker, R. M. miR-184 exhibits angiostatic properties via regulation of Akt and VEGF signaling pathways.
Asunto(s)
Regulación de la Expresión Génica/fisiología , Queratinocitos/metabolismo , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inductores de la Angiogénesis , Animales , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
Macropinocytosis, by which cells ingest large amounts of fluid, and autophagy, the lysosome-based catabolic process, involve vesicular biogenesis (early stage) and turnover (end stage). Much is known about early-stage events; however, our understanding of how the end stages of these processes are governed is incomplete. Here we demonstrate that the microRNA-103/107(miR-103/107) family, which is preferentially expressed in the stem cell-enriched limbal epithelium, coordinately regulates aspects of both these activities. Loss of miR-103/107 causes dysregulation of macropinocytosis with the formation of large vacuoles, primarily through up-regulation of Src, Ras, and Ankfy1. Vacuole accumulation is not a malfunction of early-stage autophagy; rather, miR-103/107 ensure proper end-stage autophagy by regulating diacylglycerol/protein kinase C and cyclin-dependent kinase 5 signaling, which enables dynamin to function in vacuole clearance. Our findings unveil a key biological function for miR-103/107 in coordinately suppressing macropinocytosis and preserving end-stage autophagy, thereby contributing to maintenance of a stem cell-enriched epithelium.