Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1262-1265, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086000

RESUMEN

Access to low-cost, rapid, individualized diagnostics at point-of-care and point-of-need is vital to minimize the impact of highly infectious viruses, such as influenza. Herein, a biosensor for detecting hemagglutinin (HA), an abundant capsid protein in H1N1 viruses, is demonstrated. A gold working electrode was functionalized with a thiol-modified, HA-binding aptamer derivatized with a methylene blue modification for redox reporting. The aptamer was characterized by surface plasmon resonance to confirm its biorecognition activity for HA. The aptasensor was characterized by square wave voltammetry to quantify the sensor's response to varying concentrations of HA. The sensor exhibited a lower limit of detection of 1.5 pM with linear detection of up to 1.2 nM in both Tris buffer and simulated human saliva, thus encompassing the clinically relevant HA range in saliva. Average sensitivity was measured at 21.083 nA·nM-1in Tris and 14.5 nA·nM-1in artificial saliva across clinically relevant HA titers. Sensor stability across time was also investigated, providing a preliminary understanding of the translational viability of the aptasensors for mobile and remote diagnostic applications.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Aptámeros de Nucleótidos/química , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Gripe Humana/diagnóstico , Saliva
2.
ACS Appl Mater Interfaces ; 12(32): 36787-36798, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32689785

RESUMEN

The use of bulk polymer melt additives provides a facile, industrially relevant approach to tailor properties of polymer surfaces for many different applications. These melt additives, when blended with polymers prior to melt spinning, migrate to the fiber surface and influence surface functionality. While the use of bulk polymer melt additives to impart hydrophilicity or oleophobicity is well studied, the impact of the fiber formation process on additive migration and resultant repellency of nonwoven media products remains largely unexplored. In this study, we produce fluorochemical melt additive containing meltblown nonwovens, and establish methods for characterization of fiber mat surface composition and repellency. Repellency of low surface tension fluids is a significant challenge and is of particular importance in the creation of medical garments such as surgical gowns and masks which must perform as liquid barriers even when exposed to alcohol based solutions. Similarly, melt additives are also used in the production of electret air filtration devices. Electret filters are imbued with charges to enhance particle capture performance, but this charge can be negated through wetting by low surface tension fluids. To address this challenge, the changing composition of fiber surfaces due to the migration of additives is monitored via X-ray Photoelectron Spectroscopy, then related to repellency of alcohol solutions by contact angle analysis. We demonstrate that for the samples tested a fluorine to carbon (F/C) ratio of 0.35 is sufficient to prevent wicking of isopropanol droplets, and higher surface tension fluids could be repelled by fiber mats with lower fluorine content. Through the use of cross-sectional ToF-SIMS analysis, we find that migration of additives is key to the performance of samples with low additive loadings, and that these phenomena are heavily influenced by many nonwoven manufacturing parameters including fiber size, die-to-collector distance, and polymer resin melt flow rates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...