Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
iScience ; 24(8): 102840, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34368656

RESUMEN

Maintaining connectivity between high-elevation public lands is important for wolverines and other species of conservation concern. This work represents the first effort to prioritize wolverine connectivity under future climate conditions using a systematic conservation planning framework. We optimized 10, 15, 20, and 50% of habitat features for wolverines using integer linear programming. We identified 369 privately owned areas in the 10% solution, 572 in the 15% solution, 822 in the 20% solution, and 3,996 in the 50% solution where voluntary landowner easements would improve the long-term landscape functionality for wolverine connectivity. The median estimated easements ranged from $8,762 to $12,220 across the four solutions (total costs $14,874,371 to $196,346,714). Overall, this effort demonstrates the utility of optimization problems for conserving connectivity, provides a proactive tool to engage potential collaborators, identifies easements that will likely protect various subalpine species, and offers a framework for the conservation of additional species.

2.
Ecohealth ; 17(2): 203-216, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32699950

RESUMEN

In 2007, common vampire bats were the source of the first outbreak of paralytic bovine rabies in Uruguay. The outbreak coincided in space and time with the fragmentation of native grasslands for monospecific forestry for wood and cellulose production. Using spatial analyses, we show that the increase in grassland fragmentation, together with the minimum temperature in the winter, accounts for the spatial pattern of outbreaks in the country. We propose that fragmentation may increase the connectivity of vampire bat colonies by promoting the sharing of feeding areas, while temperature modulates their home range plasticity. While a recent introduction of the virus from neighboring Brazil could have had an effect on outbreak occurrence, we show here that the distribution of rabies cases is unlikely to be explained by only an invasion process from Brazil. In accordance with previous modeling efforts, an increase in connectivity may promote spatial persistence of rabies virus within vampire bat populations. Our results suggest that land use planning might help to reduce grassland fragmentation and thus reduce risk of rabies transmission to livestock. This will be especially important in the context of climatic changes and increasing minimum temperatures in the winter.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Rabia/epidemiología , Animales , Brasil/epidemiología , Bovinos , Enfermedades de los Bovinos/virología , Quirópteros/virología , Brotes de Enfermedades , Pradera , Rabia/veterinaria , Virus de la Rabia
3.
Ecol Evol ; 7(1): 125-144, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28070281

RESUMEN

Snowshoe hares (Lepus americanus) are an ecologically important herbivore because they modify vegetation through browsing and serve as a prey resource for multiple predators. We implemented a multiscale approach to characterize habitat relationships for snowshoe hares across the mixed conifer landscape of the northern Rocky Mountains, USA. Our objectives were to (1) assess the relationship between horizontal cover and snowshoe hares, (2) estimate how forest metrics vary across the gradient of snowshoe hare use and horizontal cover, and (3) model and map snowshoe hare occupancy and intensity of use. Results indicated that both occupancy and intensity of use by snowshoe hares increased with horizontal cover and that the effect became stronger as intensity of use increased. This underscores the importance of dense horizontal cover to achieve high use, and likely density, of snowshoe hares. Forest structure in areas with high snowshoe hare use and horizontal cover was characterized as multistoried with dense canopy cover and medium-sized trees (e.g., 12.7-24.4 cm). The abundance of lodgepole pine (Pinus contorta) was associated with snowshoe hare use within a mixed conifer context, and the only species to increase in abundance with horizontal cover was Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa). Our landscape-level modeling produced similar patterns in that we observed a positive effect of lodgepole pine and horizontal cover on both occupancy and use by snowshoe hares, but we also observed a positive yet parabolic effect of snow depth on snowshoe hare occupancy. This work is among the first to characterize the multiscale habitat relationships of snowshoe hares across a mixed conifer landscape as well as to map their occupancy and intensity of use. Moreover, our results provide stand- and landscape-level insights that directly relate to management agencies, which aids in conservation efforts of snowshoe hares and their associated predators.

4.
PLoS One ; 9(10): e108299, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25330232

RESUMEN

Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.


Asunto(s)
Dióxido de Carbono/análisis , Medicago sativa/fisiología , Tecnología de Sensores Remotos , Análisis Espectral , Estrés Fisiológico/efectos de los fármacos , Agua/farmacología , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Sequías , Medicago sativa/efectos de los fármacos , Medicago sativa/metabolismo , Suelo/química
5.
Appl Opt ; 51(4): A59-66, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22307130

RESUMEN

As a component of a multisensor approach to monitoring carbon sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral imaging system has been developed for indirect detection of gas leaks through observations of the resulting stress in overlying vegetation. The imager employs front-end optics designed to provide a full 50° field of view with a small, low-cost CMOS detector, while still maintaining quasi-collimated light through the angle-dependent interference filters used to define the spectral bands. Red and near-infrared vegetation reflectances are used to compute the normalized difference vegetation index (NDVI) and spatial and temporal patterns are analyzed statistically to identify regions of anomalous stress, which are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self-contained with an onboard compact computer and is housed in a weather-proof housing to enable extended outdoor deployment.

6.
Sensors (Basel) ; 8(8): 4983-4994, 2008 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27873796

RESUMEN

Moderate resolution satellite imagery traditionally has been thought to be inadequate for mapping vegetation at the species level. This has made comprehensive mapping of regional distributions of sensitive species, such as whitebark pine, either impractical or extremely time consuming. We sought to determine whether using a combination of moderate resolution satellite imagery (Landsat Enhanced Thematic Mapper Plus), extensive stand data collected by land management agencies for other purposes, and modern statistical classification techniques (boosted classification trees) could result in successful mapping of whitebark pine. Overall classification accuracies exceeded 90%, with similar individual class accuracies. Accuracies on a localized basis varied based on elevation. Accuracies also varied among administrative units, although we were not able to determine whether these differences related to inherent spatial variations or differences in the quality of available reference data.

7.
Sensors (Basel) ; 8(1): 314-326, 2008 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-27879710

RESUMEN

Agricultural producers require knowledge of soil water at plant rooting depths,while many remote sensing studies have focused on surface soil water or mechanisticmodels that are not easily parameterized. We developed site-specific empirical models topredict spring soil water content for two Montana ranches. Calibration data sample sizeswere based on the estimated variability of soil water and the desired level of precision forthe soil water estimates. Models used Landsat imagery, a digital elevation model, and asoil survey as predictor variables. Our objectives were to see whether soil water could bepredicted accurately with easily obtainable calibration data and predictor variables and toconsider the relative influence of the three sources of predictor variables. Independentvalidation showed that multiple regression models predicted soil water with average error(RMSD) within 0.04 mass water content. This was similar to the accuracy expected basedon a statistical power test based on our sample size (n = 41 and n = 50). Improvedprediction precision could be achieved with additional calibration samples, and rangemanagers can readily balance the desired level of precision with the amount of effort tocollect calibration data. Spring soil water prediction effectively utilized a combination ofland surface imagery, terrain data, and subsurface soil characterization data. Rancherscould use accurate spring soil water content predictions to set stocking rates. Suchmanagement can help ensure that water, soil, and vegetation resources are usedconservatively in irrigated and non-irrigated rangeland systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...