Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Microbiol Spectr ; : e0094224, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292000

RESUMEN

Yersinia pestis, one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug-resistant strains. Indeed, antibiotic-resistant strains (e.g., strains carrying multidrug-resistant or MDR plasmids) have been isolated in various countries and endemic areas. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines (none FDA approved yet) may not be effective and those that cannot be managed by currently available antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation effective against a panel of at least 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ~88% protection when delivered 18 h post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies provide proof-of-concept that YPP-401 could be an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed multidrug-resistant strains.IMPORTANCECurrently, there are no FDA-approved plague vaccines. Since antibiotic-resistant strains of Y. pestis have emerged or are being intentionally developed to be used as a biothreat agent, new treatment modalities are direly needed. Phage therapy provides a viable option against potentially antibiotic-resistant strains. Additionally, phages are nontoxic and have been approved by the FDA for use in the food industry. Our study provides the first evidence of the protective effect of a cocktail of four phages against pneumonic plague, the most severe form of disease. When treatment was initiated 18 h post infection by either the intranasal or intraperitoneal route in Brown Norway rats, up to 87.5% protection was observed. The phage cocktail had a minimal impact on a representative human microbiome panel, unlike antibiotics. This study provides strong proof-of-concept data for the further development of phage-based therapy to treat plague.

2.
Health Expect ; 27(1): e13968, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-39102693

RESUMEN

BACKGROUND AND CONTEXT: Involving people with lived experience of health conditions and the public (consumers) in health research is supported by policy, practice and research funding schemes. However, consumer involvement programmes in discovery-based preclinical research settings are uncommon. Few formal evaluations of these programmes are reported in the literature. OBJECTIVE: This study aimed to evaluate an established patient and public involvement programme operating in a major Australian Discovery-Based Medical Research Institute (DBMRI) to inform programme development and the wider field. DESIGN AND PARTICIPANTS: A multimethods programme evaluation incorporating demographic, descriptive and qualitative data obtained through consumer/researcher co-developed online surveys and semistructured virtual interviews. Programme participants (n = 111) were invited to complete an online survey seeking feedback on their experience of involvement, programme processes and perceived impacts. A purposive sample of 25 participants was interviewed. Descriptive data were analysed using explanatory statistics and qualitative data from surveys and interviews were thematically analysed. RESULTS: This consumer involvement programme was found to be useful and meaningful for most participants, with specific examples of perceived added value. Consumers most commonly engaged with researchers to inform research development, prepare funding applications or strengthen lay communication of science. Genuine consumer-researcher interactions, relationship development and mutual respect were key elements in a positive experience for participants. Opportunities to 'give back', to learn and to ground research in lived experience were identified programme strengths and benefits. Developing researcher training in how to work with consumers, increasing the diversity of the consumer group membership and expanding the range of consumer activities were identified opportunities for improvement. Organisational support and adequate programme resourcing were identified as key enablers. CONCLUSION: Discovery-based preclinical research is often viewed as being distant from clinical application; therefore, consumer involvement may be considered less relevant. However this study identified value in bringing a strong consumer voice to the discovery-based research process through a coordinated, organisation-wide approach with the potential for application in similar preclinical research settings. PATIENT OR PUBLIC CONTRIBUTION: Four consumer partners from the DBMRI Consumer Advisory Panel were actively engaged in developing this programme evaluation. Specifically, these consumer partners co-developed and pilot-tested surveys and interview guides, reviewed and commented on project data analysis and reporting and also contributed as co-authors by editing the manuscript.


Asunto(s)
Investigación Biomédica , Participación de la Comunidad , Participación del Paciente , Evaluación de Programas y Proyectos de Salud , Humanos , Australia , Masculino , Femenino , Participación de la Comunidad/métodos , Persona de Mediana Edad , Adulto , Encuestas y Cuestionarios , Anciano , Entrevistas como Asunto
3.
Antimicrob Agents Chemother ; 68(7): e0011224, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38888319

RESUMEN

Inhalation anthrax is the most severe form of Bacillus anthracis infection, often progressing to fatal conditions if left untreated. While recommended antibiotics can effectively treat anthrax when promptly administered, strains engineered for antibiotic resistance could render these drugs ineffective. Telavancin, a semisynthetic lipoglycopeptide antibiotic, was evaluated in this study as a novel therapeutic against anthrax disease. Specifically, the aims were to (i) assess in vitro potency of telavancin against 17 B. anthracis isolates by minimum inhibitory concentration (MIC) testing and (ii) evaluate protective efficacy in rabbits infected with a lethal dose of aerosolized anthrax spores and treated with human-equivalent intravenous telavancin doses (30 mg/kg every 12 hours) for 5 days post-antigen detection versus a humanized dose of levofloxacin and vehicle control. Blood samples were collected at various times post-infection to assess the level of bacteremia and antibody production, and tissues were collected to determine bacterial load. The animals' body temperatures were also recorded. Telavancin demonstrated potent bactericidal activity against all strains tested (MICs 0.06-0.125 µg/mL). Further, telavancin conveyed 100% survival in this model and cleared B. anthracis from the bloodstream and organ tissues more effectively than a humanized dose of levofloxacin. Collectively, the low MICs against all strains tested and rapid bactericidal in vivo activity demonstrate that telavancin has the potential to be an effective alternative for the treatment or prophylaxis of anthrax infection.


Asunto(s)
Aminoglicósidos , Carbunco , Antibacterianos , Bacillus anthracis , Lipoglucopéptidos , Pruebas de Sensibilidad Microbiana , Infecciones del Sistema Respiratorio , Animales , Lipoglucopéptidos/farmacología , Conejos , Carbunco/tratamiento farmacológico , Carbunco/microbiología , Carbunco/mortalidad , Bacillus anthracis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Aminoglicósidos/farmacología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología , Modelos Animales de Enfermedad , Levofloxacino/farmacología , Femenino
4.
Res Sq ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585816

RESUMEN

The antimicrobial resistance crisis (AMR) is associated with millions of deaths and undermines the franchise of medicine. Of particular concern is the threat of bioweapons, exemplified by anthrax. Introduction of novel antibiotics helps mitigate AMR, but does not address the threat of bioweapons with engineered resistance. We reasoned that teixobactin, an antibiotic with no detectable resistance, is uniquely suited to address the challenge of weaponized anthrax. Teixobactinbinds to immutable targets, precursors of cell wall polymers. Here we show that teixobactinis highly efficacious in a rabbit model of inhalation anthrax. Inhaling spores of Bacillus anthracis causes overwhelming morbidity and mortality. Treating rabbits with teixobactinafter the onset of disease rapidly eliminates the pathogen from blood and tissues, normalizes body temperature, and prevents tissue damage. Teixobactinassembles into an irreversible supramolecular structure of the surface of B. anthracis membrane, likely contributing to its unusually high potency against anthrax. Antibiotics evading resistance provide a rational solution to both AMR and engineered bioweapons.

5.
bioRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293171

RESUMEN

Yersinia pestis , one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug resistant strains. The dissemination of such Y. pestis strains could be catastrophic, with public health consequences far more daunting than those caused by the recent COVID-19 pandemic. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines, none FDA approved yet, may not be effective, and those that cannot be controlled by approved antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation with a 100% lytic activity against a panel of 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ∼88% protection when delivered 18 hours post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies suggest that YPP-401 could provide an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed strains that cannot be managed by vaccines in development and antibiotics.

7.
Biomater Sci ; 11(20): 6834-6847, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37646133

RESUMEN

Tumor-associated immune cells play a crucial role in cancer progression. Myeloid-derived suppressor cells (MDSCs), for example, are immature innate immune cells that infiltrate the tumor to exert immunosuppressive activity and protect cancer cells from the host's immune system and/or cancer-specific immunotherapies. While tumor-associated immune cells have emerged as a promising therapeutic target, efforts to counter immunosuppression within the tumor niche have been hampered by the lack of approaches that selectively target the immune cell compartment of the tumor, to effectively eliminate "tumor-protecting" immune cells and/or drive an "anti-tumor" phenotype. Here we report on a novel nanotechnology-based approach to target tumor-associated immune cells and promote "anti-tumor" responses in a murine model of breast cancer. Engineered extracellular vesicles (EVs) decorated with ICAM-1 ligands and loaded with miR-146a and Glut1, were biosynthesized (in vitro or in vivo) and administered to tumor-bearing mice once a week for up to 5 weeks. The impact of this treatment modality on the immune cell compartment and tumor progression was evaluated via RT-qPCR, flow cytometry, and histology. Our results indicate that weekly administration of the engineered EVs (i.e., ICAM-1-decorated and loaded with miR-146a and Glut1) hampered tumor progression compared to ICAM-1-decorated EVs with no cargo. Flow cytometry analyses of the tumors indicated a shift in the phenotype of the immune cell population toward a more pro-inflammatory state, which appeared to have facilitated the infiltration of tumor-targeting T cells, and was associated with a reduction in tumor size and decreased metastatic burden. Altogether, our results indicate that ICAM-1-decorated EVs could be a powerful platform nanotechnology for the deployment of immune cell-targeting therapies to solid tumors.

8.
J Infect Dis ; 228(Suppl 7): S701-S711, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37474248

RESUMEN

Marburg virus (MARV) causes a hemorrhagic fever disease in human and nonhuman primates with high levels of morbidity and mortality. Concerns about weaponization of aerosolized MARV have spurred the development of nonhuman primate (NHP) models of aerosol exposure. To address the potential threat of aerosol exposure, a monoclonal antibody that binds MARV glycoprotein was tested, MR186YTE, for its efficacy as a prophylactic. MR186YTE was administered intramuscularly to NHPs at 15 or 5 mg/kg 1 month prior to MARV aerosol challenge. Seventy-five percent (3/4) of the 15 mg/kg dose group and 50% (2/4) of the 5 mg/kg dose group survived. Serum analyses showed that the NHP dosed with 15 mg/kg that succumbed to infection developed an antidrug antibody response and therefore had no detectable MR186YTE at the time of challenge. These results suggest that intramuscular dosing of mAbs may be a clinically useful prophylaxis for MARV aerosol exposure.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Animales , Humanos , Anticuerpos Monoclonales , Primates , Aerosoles
9.
Biosci Rep ; 43(8)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37503762

RESUMEN

The biological links between cancer and pregnancy are of interest due to parallel proliferative, immunosuppressive, and invasive mechanisms between tumour and placental cells. However, the proliferation and invasion of placental cells are strictly regulated. The understanding of this regulation is largely unknown. Placental extracellular vesicles (EVs) may play an important role in this regulation, as placental EVs are known to contribute to maternal adaptation, including adaptation of the vascular and immune systems. We have previously reported that placental EVs significantly inhibited ovarian cancer cell proliferation by delaying the progression of the cell cycle. We, therefore, performed this pilot in vivo study to investigate whether placental EVs can also inhibit ovarian tumour growth in a SKOV-3 human tumour xenograft model. A single intraperitoneal injection of placental EVs at 15 days post tumour implantation, significantly inhibited the growth of the tumours in our in vivo model. Signs of cellular necrosis were observed in the ovarian tumour tissues, but not in other organs collected from mice that had been treated with placental EVs. Expression of receptor-interacting kinase 1 (RIPK1) and mixed linkage kinase domain-like (MLKL), which are mediators of necroptosis were not observed in our xenografted tumours. However, extensive infiltration of CD169+ macrophages and NK cells in ovarian tumour tissues collected from placental micro-EVs treated mice were observed. We demonstrate here that inhibition of ovarian tumour growth in our xenograft model by placental EVs involves cellular necrosis and infiltration of CD169+ macrophages and NK cells into the tumour tissues.


Asunto(s)
Vesículas Extracelulares , Neoplasias Ováricas , Embarazo , Humanos , Femenino , Animales , Ratones , Placenta/metabolismo , Vesículas Extracelulares/metabolismo , Primer Trimestre del Embarazo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Necrosis
10.
J Biomed Mater Res A ; 111(11): 1722-1733, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37326365

RESUMEN

Autologous adipose tissue is commonly used for tissue engraftment for the purposes of soft tissue reconstruction due to its relative abundance in the human body and ease of acquisition using liposuction methods. This has led to the adoption of autologous adipose engraftment procedures that allow for the injection of adipose tissues to be used as a "filler" for correcting cosmetic defects and deformities in soft tissues. However, the clinical use of such methods has several limitations, including high resorption rates and poor cell survivability, which lead to low graft volume retention and inconsistent outcomes. Here, we describe a novel application of milled electrospun poly(lactic-co-glycolic acid) (PLGA) fibers, which can be co-injected with adipose tissue to improve engraftment outcomes. These PLGA fibers had no significant negative impact on the viability of adipocytes in vitro and did not elicit long-term proinflammatory responses in vivo. Furthermore, co-delivery of human adipose tissue with pulverized electrospun PLGA fibers led to significant improvements in reperfusion, vascularity, and retention of graft volume compared to injections of adipose tissue alone. Taken together, the use of milled electrospun fibers to enhance autologous adipose engraftment techniques represents a novel approach for improving upon the shortcomings of such methods.


Asunto(s)
Ácido Poliglicólico , Andamios del Tejido , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico/farmacología , Ingeniería de Tejidos/métodos , Glicoles , Tejido Adiposo
11.
Int J Technol Assess Health Care ; 39(1): e36, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37336780

RESUMEN

The Patient-Centered Outcomes Research Institute (PCORI) is a nonprofit, nongovernmental organization established by the U.S. Congress to fund comparative clinical effectiveness research focusing on patient-centered outcomes through the engagement of stakeholders. Evaluation of emerging healthcare innovations is one of PCORI's five National Priorities for Health. One such initiative is PCORI's Emerging Technologies and Therapeutics Reports program, established to provide timely overviews of evidence on new drugs and other healthcare technologies. This article provides an overview of completed and ongoing Emerging Technologies and Therapeutics Reports including lessons learned to date. In addition to systematic searches, systematic selection of studies, and transparent reporting of the available evidence, informed by a select number of stakeholders (i.e., key informants), these reports focus on contextual factors shaping the diffusion of emerging technologies that are often not reported in the medical literature. This article also compares processes and methodologies of health technology assessments (HTAs) from a selected number of national and international publicly funded agencies with a goal toward potential future enhancement of PCORI's Emerging Technologies and Therapeutics Reports program. HTAs vary considerably in terms of funding, types of assessments, the role of manufacturers, stakeholder engagement, timeline to complete from the start to the finish of a draft report publication, and communication of uncertainty for informed decision making. Future Emerging Technologies and Therapeutics Reports may focus on rapid reports to support a more expedient development of evidence. Future research could explore the role of contextual factors identified in these reports on targeted evidence generation.


Asunto(s)
Evaluación de Resultado en la Atención de Salud , Evaluación del Resultado de la Atención al Paciente , Humanos , Instituciones de Salud , Atención a la Salud , Academias e Institutos
12.
J Infect Dis ; 228(Suppl 7): S604-S616, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37145930

RESUMEN

BACKGROUND: Highly pathogenic filoviruses such as Ebola virus (EBOV) hold capacity for delivery by artificial aerosols, and thus potential for intentional misuse. Previous studies have shown that high doses of EBOV delivered by small-particle aerosol cause uniform lethality in nonhuman primates (NHPs), whereas only a few small studies have assessed lower doses in NHPs. METHODS: To further characterize the pathogenesis of EBOV infection via small-particle aerosol, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona, which may help define risks associated with small particle aerosol exposures. RESULTS: Despite using challenge doses orders of magnitude lower than previous studies, infection via this route was uniformly lethal across all cohorts. Time to death was delayed in a dose-dependent manner between aerosol-challenged cohorts, as well as in comparison to animals challenged via the intramuscular route. Here, we describe the observed clinical and pathological details including serum biomarkers, viral burden, and histopathological changes leading to death. CONCLUSIONS: Our observations in this model highlight the striking susceptibility of NHPs, and likely humans, via small-particle aerosol exposure to EBOV and emphasize the need for further development of diagnostics and postexposure prophylactics in the event of intentional release via deployment of an aerosol-producing device.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Animales , Macaca fascicularis , Aerosoles , Carga Viral
13.
Nat Commun ; 14(1): 1129, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854749

RESUMEN

Tissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.


Asunto(s)
Fibroblastos , Piel , Cicatrización de Heridas , Animales , Humanos , Ratones , Antagomirs/farmacología , Antagomirs/uso terapéutico , Fibroblastos/metabolismo , Fibroblastos/fisiología , Oligonucleótidos/farmacología , Piel/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
14.
Adv Nanobiomed Res ; 3(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38911285

RESUMEN

Direct nuclear reprogramming has the potential to enable the development of ß cell replacement therapies for diabetes that do not require the use of progenitor/stem cell populations. However, despite their promise, current approaches to ß cell-directed reprogramming rely heavily on the use of viral vectors. Here we explored the use of extracellular vesicles (EVs) derived from human dermal fibroblasts (HDFs) as novel non-viral carriers of endocrine cell-patterning transcription factors, to transfect and transdifferentiate pancreatic ductal epithelial cells (PDCs) into hormone-expressing cells. Electrotransfection of HDFs with expression plasmids for Pdx1, Ngn3, and MafA (PNM) led to the release of EVs loaded with PNM at the gene, mRNA, and protein level. Exposing PDC cultures to PNM-loaded EVs led to successful transfection and increased PNM expression in PDCs, which ultimately resulted in endocrine cell-directed conversions based on the expression of insulin/c-peptide, glucagon, and glucose transporter 2 (Glut2). These findings were further corroborated in vivo in a mouse model following intraductal injection of PNM- vs sham-loaded EVs. Collectively these findings suggest that dermal fibroblast-derived EVs could potentially serve as a powerful platform technology for the development and deployment of non-viral reprogramming-based cell therapies for insulin-dependent diabetes.

15.
PLoS Biol ; 20(8): e3001758, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35998206

RESUMEN

Many diseases linked with ethnic health disparities associate with changes in microbial communities in the United States, but the causes and persistence of ethnicity-associated microbiome variation are not understood. For instance, microbiome studies that strictly control for diet across ethnically diverse populations are lacking. Here, we performed multiomic profiling over a 9-day period that included a 4-day controlled vegetarian diet intervention in a defined geographic location across 36 healthy Black and White females of similar age, weight, habitual diets, and health status. We demonstrate that individuality and ethnicity account for roughly 70% to 88% and 2% to 10% of taxonomic variation, respectively, eclipsing the effects a short-term diet intervention in shaping gut and oral microbiomes and gut viromes. Persistent variation between ethnicities occurs for microbial and viral taxa and various metagenomic functions, including several gut KEGG orthologs, oral carbohydrate active enzyme categories, cluster of orthologous groups of proteins, and antibiotic-resistant gene categories. In contrast to the gut and oral microbiome data, the urine and plasma metabolites tend to decouple from ethnicity and more strongly associate with diet. These longitudinal, multiomic profiles paired with a dietary intervention illuminate previously unrecognized associations of ethnicity with metagenomic and viromic features across body sites and cohorts within a single geographic location, highlighting the importance of accounting for human microbiome variation in research, health determinants, and eventual therapies. Trial Registration: ClinicalTrials.gov ClinicalTrials.gov Identifier: NCT03314194.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacterias/genética , Etnicidad , Heces , Femenino , Microbioma Gastrointestinal/genética , Humanos , Microbiota/genética , Viroma
16.
Adv Healthc Mater ; 11(5): e2100805, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35014204

RESUMEN

Gene/oligonucleotide therapies have emerged as a promising strategy for the treatment of different neurological conditions. However, current methodologies for the delivery of neurogenic/neurotrophic cargo to brain and nerve tissue are fraught with caveats, including reliance on viral vectors, potential toxicity, and immune/inflammatory responses. Moreover, delivery to the central nervous system is further compounded by the low permeability of the blood brain barrier. Extracellular vesicles (EVs) have emerged as promising delivery vehicles for neurogenic/neurotrophic therapies, overcoming many of the limitations mentioned above. However, the manufacturing processes used for therapeutic EVs remain poorly understood. Here, we conducted a detailed study of the manufacturing process of neurogenic EVs by characterizing the nature of cargo and surface decoration, as well as the transfer dynamics across donor cells, EVs, and recipient cells. Neurogenic EVs loaded with Ascl1, Brn2, and Myt1l (ABM) are found to show enhanced neuron-specific tropism, modulate electrophysiological activity in neuronal cultures, and drive pro-neurogenic conversions/reprogramming. Moreover, murine studies demonstrate that surface decoration with glutamate receptors appears to mediate enhanced EV delivery to the brain. Altogether, the results indicate that ABM-loaded designer EVs can be a promising platform nanotechnology to drive pro-neuronal responses, and that surface functionalization with glutamate receptors can facilitate the deployment of EVs to the brain.


Asunto(s)
Vesículas Extracelulares , Animales , Barrera Hematoencefálica , Comunicación Celular , Sistema Nervioso Central , Vesículas Extracelulares/metabolismo , Ratones , Neuronas
17.
Adv Healthc Mater ; 11(5): e2101619, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34662497

RESUMEN

Extracellular vesicles (EVs) have emerged as a promising carrier system for the delivery of therapeutic payloads in multiple disease models, including cancer. However, effective targeting of EVs to cancerous tissue remains a challenge. Here, it is shown that nonviral transfection of myeloid-derived suppressor cells (MDSCs) can be leveraged to drive targeted release of engineered EVs that can modulate transfer and overexpression of therapeutic anticancer genes in tumor cells and tissue. MDSCs are immature immune cells that exhibit enhanced tropism toward tumor tissue and play a role in modulating tumor progression. Current MDSC research has been mostly focused on mitigating immunosuppression in the tumor niche; however, the tumor homing abilities of these cells present untapped potential to deliver EV therapeutics directly to cancerous tissue. In vivo and ex vivo studies with murine models of breast cancer show that nonviral transfection of MDSCs does not hinder their ability to home to cancerous tissue. Moreover, transfected MDSCs can release engineered EVs and mediate antitumoral responses via paracrine signaling, including decreased invasion/metastatic activity and increased apoptosis/necrosis. Altogether, these findings indicate that MDSCs can be a powerful tool for the deployment of EV-based therapeutics to tumor tissue.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Células Supresoras de Origen Mieloide , Animales , Neoplasias de la Mama/terapia , Femenino , Humanos , Ratones , Microambiente Tumoral
18.
ACS Infect Dis ; 7(8): 2176-2191, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34218660

RESUMEN

Anthrax is caused by Bacillus anthracis and can result in nearly 100% mortality due in part to anthrax toxin. Antimalarial amodiaquine (AQ) acts as a host-oriented inhibitor of anthrax toxin endocytosis. Here, we determined the pharmacokinetics and safety of AQ in mice, rabbits, and humans as well as the efficacy in the fly, mouse, and rabbit models of anthrax infection. In the therapeutic-intervention studies, AQ nearly doubled the survival of mice infected subcutaneously with a B. anthracis dose lethal to 60% of the animals (LD60). In rabbits challenged with 200 LD50 of aerosolized B. anthracis, AQ as a monotherapy delayed death, doubled the survival rate of infected animals that received a suboptimal amount of antibacterial levofloxacin, and reduced bacteremia and toxemia in tissues. Surprisingly, the anthrax efficacy of AQ relies on an additional host macrophage-directed antibacterial mechanism, which was validated in the toxin-independent Drosophila model of Bacillus infection. Lastly, a systematic literature review of the safety and pharmacokinetics of AQ in humans from over 2 000 published articles revealed that AQ is likely safe when taken as prescribed, and its pharmacokinetics predicts anthrax efficacy in humans. Our results support the future examination of AQ as adjunctive therapy for the prophylactic anthrax treatment.


Asunto(s)
Carbunco , Bacillus anthracis , Amodiaquina , Animales , Carbunco/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Levofloxacino , Ratones , Conejos , Revisiones Sistemáticas como Asunto
19.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33741587

RESUMEN

Ischemic stroke causes vascular and neuronal tissue deficiencies that could lead to substantial functional impairment and/or death. Although progenitor-based vasculogenic cell therapies have shown promise as a potential rescue strategy following ischemic stroke, current approaches face major hurdles. Here, we used fibroblasts nanotransfected with Etv2, Foxc2, and Fli1 (EFF) to drive reprogramming-based vasculogenesis, intracranially, as a potential therapy for ischemic stroke. Perfusion analyses suggest that intracranial delivery of EFF-nanotransfected fibroblasts led to a dose-dependent increase in perfusion 14 days after injection. MRI and behavioral tests revealed ~70% infarct resolution and up to ~90% motor recovery for mice treated with EFF-nanotransfected fibroblasts. Immunohistological analysis confirmed increases in vascularity and neuronal cellularity, as well as reduced glial scar formation in response to treatment with EFF-nanotransfected fibroblasts. Together, our results suggest that vasculogenic cell therapies based on nanotransfection-driven (i.e., nonviral) cellular reprogramming represent a promising strategy for the treatment of ischemic stroke.


Asunto(s)
Reprogramación Celular , Accidente Cerebrovascular Isquémico , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Accidente Cerebrovascular Isquémico/terapia , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...