Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 409, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289189

RESUMEN

Autophagy is an evolutionarily ancient catabolic pathway and has recently emerged as an integral part of the innate immune system. While the core machinery of autophagy is well defined, the physiological regulation of autophagy is less understood. Here, we identify a C-terminal fragment of human hemoglobin A (HBA1, amino acids 111-132) in human bone marrow as a fast-acting non-inflammatory inhibitor of autophagy initiation. It is proteolytically released from full-length HBA1 by cathepsin E, trypsin or pepsin. Biochemical characterization revealed that HBA1(111-132) has an in vitro stability of 52 min in human plasma and adopts a flexible monomeric conformation in solution. Structure-activity relationship studies revealed that the C-terminal 13 amino acids of HBA1(120-132) are sufficient to inhibit autophagy, two charged amino acids (D127, K128) mediate solubility, and two serines (S125, S132) are required for function. Successful viruses like human immunodeficiency virus 1 (HIV-1) evolved strategies to subvert autophagy for virion production. Our results show that HBA1(120-132) reduced virus yields of lab-adapted and primary HIV-1. Summarizing, our data identifies naturally occurring HBA1(111-132) as a physiological, non-inflammatory antagonist of autophagy. Optimized derivatives of HBA1(111-132) may offer perspectives to restrict autophagy-dependent viruses.


Asunto(s)
Autofagia , VIH-1 , Humanos , VIH-1/metabolismo , VIH-1/fisiología , Relación Estructura-Actividad , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Secuencia de Aminoácidos
2.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256061

RESUMEN

The CRISPR-Cas12a platform has attracted interest in the genome editing community because the prototypical Acidaminococcus Cas12a generates a staggered DNA double-strand break upon binding to an AT-rich protospacer-adjacent motif (PAM, 5'-TTTV). The broad application of the platform in primary human cells was enabled by the development of an engineered version of the natural Cas12a protein, called Cas12a Ultra. In this study, we confirmed that CRISPR-Cas12a Ultra ribonucleoprotein complexes enabled allelic gene disruption frequencies of over 90% at multiple target sites in human T cells, hematopoietic stem and progenitor cells (HSPCs), and induced pluripotent stem cells (iPSCs). In addition, we demonstrated, for the first time, the efficient knock-in potential of the platform in human iPSCs and achieved targeted integration of a GFP marker gene into the AAVS1 safe harbor site and a CSF2RA super-exon into CSF2RA in up to 90% of alleles without selection. Clonal analysis revealed bi-allelic integration in >50% of the screened iPSC clones without compromising their pluripotency and genomic integrity. Thus, in combination with the adeno-associated virus vector system, CRISPR-Cas12a Ultra provides a highly efficient genome editing platform for performing targeted knock-ins in human iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Sistemas CRISPR-Cas , Células Madre Hematopoyéticas , Alelos
3.
Antiviral Res ; 203: 105343, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598779

RESUMEN

Besides pandemic SARS-CoV-2, also endemic seasonal human common cold coronaviruses (hCoVs) have a significant impact on human health and economy. Studies on hCoVs and the identification of antivirals are therefore crucial to improve human well-being. However, hCoVs have long been neglected and the methodology to study virus infection, replication and inhibition warrants being updated. We here evaluated the established plaque-based assays to determine viral titers and cell-to-cell spread and developed protocols for the immunodetection of the viral nucleocapsid protein by flow cytometry and in-cell ELISA to study infection rates at early time points. The developed protocols allow detection of hCoV-229E infection after 2, and hCoV-NL63 and -OC43 infection after 3 days at a single cell level or in a 96 well microtiter format, in large sample numbers without being laborious or expensive. Both assays can be applied to assess the susceptibility of cells to hCoV infection and replication, and to determine the efficacy of antiviral compounds as well as neutralizing antibodies in a sensitive and quantitative manner. Application revealed that clinically applied SARS-CoV-2 targeting monoclonal antibodies are inactive against hCoVs, but that the viral polymerase targeting antivirals remdesivir and molnupiravir are broadly active also against all three hCoVs. Further, the in-cell ELISA provided evidence that nirmatrelvir, previously shown to broadly inhibit coronavirus proteases, also prevents replication of authentic hCoVs. Importantly, the protocols described here can be easily adapted to other coronavirus strains and species as well as viruses of other families within a short time. This will facilitate future research on known and emerging (corona)viruses, support the identification of antivirals and increase the preparedness for future virus outbreaks.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Resfriado Común , Coronavirus Humano NL63 , Antivirales/farmacología , COVID-19/diagnóstico , Resfriado Común/diagnóstico , Resfriado Común/tratamiento farmacológico , Humanos , SARS-CoV-2 , Estaciones del Año
4.
Adv Sci (Weinh) ; 9(20): e2201378, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35543527

RESUMEN

Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core-shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas del Metal , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Oro , Ratones , SARS-CoV-2 , Internalización del Virus
5.
Clin Infect Dis ; 75(1): e653-e661, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35079775

RESUMEN

BACKGROUND: Most of the millions of people that are vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), have previously been infected by related circulating human coronaviruses (hCoVs) causing common colds and will experience further encounters with these viruses in the future. Whether COVID-19 vaccinations impact neutralization of seasonal coronaviruses is largely unknown. METHODS: We analyzed the capacity of sera derived from 24 individuals before and after heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination to neutralize genuine OC43, NL63, and 229E hCoVs, as well as viral pseudoparticles carrying the SARS-CoV-1, SARS-CoV-2, Middle East Respiratory Syndrome (MERS)-CoV, and hCoV-OC43, hCoV-NL63, and hCoV-229E spike proteins. Genuine hCoVs or spike containing pseudovirions were incubated with different concentrations of sera and neutralization efficiencies were determined by measuring viral RNA yields, intracellular viral nucleocapsid expression, or reporter gene expression in Huh-7 cells. RESULTS: All individuals showed strong preexisting immunity against hCoV-OC43. Neutralization of hCoV-NL63 was more variable and all sera showed only modest inhibitory activity against genuine hCoV-229E. SARS-CoV-2 vaccination resulted in efficient cross-neutralization of SARS-CoV-1 but not of MERS-CoV. On average, vaccination significantly increased the neutralizing activity against genuine hCoV-OC43, hCoV-NL63, and hCoV-229E. CONCLUSIONS: Heterologous COVID-19 vaccination may confer some cross-protection against endemic seasonal coronaviruses.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ChAdOx1 nCoV-19 , Humanos , SARS-CoV-2 , Estaciones del Año , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...