Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1384467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605965

RESUMEN

Introduction: The therapeutic potential of bispecific antibodies is becoming widely recognised, with over a hundred formats already described. For many applications, enhanced tissue penetration is sought, so bispecifics with low molecular weight may offer a route to enhanced potency. Here we report the design of bi- and tri-specific antibody-based constructs with molecular weights as low as 14.5 and 22 kDa respectively. Methods: Autonomous bovine ultra-long CDR H3 (knob domain peptide) modules have been engineered with artificial coiled-coil stalks derived from Sin Nombre orthohantavirus nucleocapsid protein and human Beclin-1, and joined in series to produce bi- and tri-specific antibody-based constructs with exceptionally low molecular weights. Results: Knob domain peptides with coiled-coil stalks retain high, independent antigen binding affinity, exhibit exceptional levels of thermal stability, and can be readily joined head-to-tail yielding the smallest described multi-specific antibody format. The resulting constructs are able to bind simultaneously to all their targets with no interference. Discussion: Compared to existing bispecific formats, the reduced molecular weight of the knob domain fusions may enable enhanced tissue penetration and facilitate binding to cryptic epitopes that are inaccessible to conventional antibodies. Furthermore, they can be easily produced at high yield as recombinant products and are free from the heavy-light chain mispairing issue. Taken together, our approach offers an efficient route to modular construction of minimalistic bi- and multi-specifics, thereby further broadening the therapeutic scope for knob domain peptides.


Asunto(s)
Anticuerpos Biespecíficos , Animales , Bovinos , Humanos , Anticuerpos Biespecíficos/química , Péptidos , Proteínas de la Nucleocápside
3.
Bioengineered ; 15(1): 2299522, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38184821

RESUMEN

GPR65 is a proton-sensing G-protein coupled receptor associated with multiple immune-mediated inflammatory diseases, whose function is relatively poorly understood. With few reagents commercially available to probe the biology of receptor, generation of an anti-GPR65 monoclonal antibody was desired. Using soluble chimeric scaffolds, such as ApoE3, displaying the extracellular loops of GPR65, together with established phage display technology, native GPR65 loop-specific antibodies were identified. Phage-derived loop-binding antibodies recognized the wild-type native receptor to which they had not previously been exposed, generating confidence in the use of chimeric soluble proteins to act as efficient surrogates for membrane protein extracellular loop antigens. This technique provides promise for the rational design of chimeric antigens in facilitating the discovery of specific antibodies to GPCRs.


This technique offers a viable approach for antibody discovery to difficult GPCRs.Structurally relevant, soluble chimeric scaffold proteins of GPR65 were generated.Chimeric antigens were used to identify GPR65-specific antibodies by phage display.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Tecnología
4.
Front Immunol ; 14: 1216967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483614

RESUMEN

Interleukin-13 (IL-13) is a cytokine involved in T-cell immune responses and is a well validated therapeutic target for the treatment of asthma, along with other allergic and inflammatory diseases. IL-13 signals through a ternary signalling complex formed with the receptors IL-13Rα1 and IL-4Rα. This complex is assembled by IL-13 initially binding IL-13Rα1, followed by association of the binary IL-13:IL-13Rα1 complex with IL-4Rα. The receptors are shared with IL-4, but IL-4 initially binds IL-4Rα. Here we report the identification and characterisation of a diverse panel of single-domain antibodies (VHHs) that bind to IL-13 (KD 40 nM-5.5 µM) and inhibit downstream IL-13 signalling (IC50 0.2-53.8 µM). NMR mapping showed that the VHHs recognise a number of epitopes on IL-13, including previously unknown allosteric sites. Further NMR investigation of VHH204 bound to IL-13 revealed a novel allosteric mechanism of inhibition, with the antibody stabilising IL-13 in a conformation incompatible with receptor binding. This also led to the identification of a conformational equilibrium for free IL-13, providing insights into differing receptor signalling complex assembly seen for IL-13 compared to IL-4, with formation of the IL-13:IL-13Rα1 complex required to stabilise IL-13 in a conformation with high affinity for IL-4Rα. These findings highlight new opportunities for therapeutic targeting of IL-13 and we report a successful 19F fragment screen of the IL-13:VHH204 complex, including binding sites identified for several hits. To our knowledge, these 19F containing fragments represent the first small-molecules shown to bind to IL-13 and could provide starting points for a small-molecule drug discovery programme.


Asunto(s)
Interleucina-13 , Anticuerpos de Dominio Único , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Subunidad alfa1 del Receptor de Interleucina-13/metabolismo , Citocinas
5.
Chem Sci ; 14(27): 7524-7536, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37449080

RESUMEN

Knowledge of protein dynamics is fundamental to the understanding of biological processes, with NMR and 2D-IR spectroscopy being two of the principal methods for studying protein dynamics. Here, we combine these two methods to gain a new understanding of the complex mechanism of a cytokine:receptor interaction. The dynamic nature of many cytokines is now being recognised as a key property in the signalling mechanism. Interleukin-17s (IL-17) are proinflammatory cytokines which, if unregulated, are associated with serious autoimmune diseases such as psoriasis, and although there are several therapeutics on the market for these conditions, small molecule therapeutics remain elusive. Previous studies, exploiting crystallographic methods alone, have been unable to explain the dramatic differences in affinity observed between IL-17 dimers and their receptors, suggesting there are factors that cannot be fully explained by the analysis of static structures alone. Here, we show that the IL-17 family of cytokines have varying degrees of flexibility which directly correlates to their receptor affinities. Small molecule inhibitors of the cytokine:receptor interaction are usually thought to function by either causing steric clashes or structural changes. However, our results, supported by other biophysical methods, provide evidence for an alternate mechanism of inhibition, in which the small molecule rigidifies the protein, causing a reduction in receptor affinity. The results presented here indicate an induced fit model of cytokine:receptor binding, with the more flexible cytokines having a higher affinity. Our approach could be applied to other systems where the inhibition of a protein-protein interaction has proved intractable, for example due to the flat, featureless nature of the interface. Targeting allosteric sites which modulate protein dynamics, opens up new avenues for novel therapeutic development.

6.
Methods Mol Biol ; 2681: 83-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405644

RESUMEN

Phage display is an in vitro technique used in the discovery of monoclonal antibodies that has been used successfully in the discovery of both camelid VHH and shark variable new antigen receptor domains (VNAR). Bovines also contain a unique "ultralong CDRH3" with a conserved structural motif, comprising a knob domain and ß-stalk. When removed from the antibody scaffold, either the entire ultralong CDRH3 or the knob domain alone, is typically capable of binding an antigen, to produce antibody fragments that are smaller than both VHH and VNAR. By extracting immune material from bovine animals and specifically amplifying knob domain DNA sequences by PCR, knob domain sequences can be cloned into a phagemid vector producing knob domain phage libraries. Target-specific knob domains can be enriched by panning the libraries against an antigen of interest. Phage display of knob domains exploits the link between phage genotype and phenotype and could prove to be a high throughput method to discover target-specific knob domains, helping to explore the pharmacological properties of this unique antibody fragment.


Asunto(s)
Bacteriófagos , Técnicas de Visualización de Superficie Celular , Animales , Bovinos , Antígenos , Anticuerpos Monoclonales/genética , Receptores de Antígenos/genética , Bacteriófagos/genética , Biblioteca de Péptidos
7.
Front Immunol ; 14: 1170357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251411

RESUMEN

Background: Serum albumin binding is an established mechanism to extend the serum half-life of antibody fragments and peptides. The cysteine rich knob domains, isolated from bovine antibody ultralong CDRH3, are the smallest single chain antibody fragments described to date and versatile tools for protein engineering. Methods: Here, we used phage display of bovine immune material to derive knob domains against human and rodent serum albumins. These were used to engineer bispecific Fab fragments, by using the framework III loop as a site for knob domain insertion. Results: By this route, neutralisation of the canonical antigen (TNFα) was retained but extended pharmacokinetics in-vivo were achieved through albumin binding. Structural characterisation revealed correct folding of the knob domain and identified broadly common but non-cross-reactive epitopes. Additionally, we show that these albumin binding knob domains can be chemically synthesised to achieve dual IL-17A neutralisation and albumin binding in a single chemical entity. Conclusions: This study enables antibody and chemical engineering from bovine immune material, via an accessible discovery platform.


Asunto(s)
Anticuerpos Biespecíficos , Albúmina Sérica , Animales , Bovinos , Humanos , Albúmina Sérica/metabolismo , Fragmentos Fab de Inmunoglobulinas , Epítopos , Técnicas de Visualización de Superficie Celular
8.
MAbs ; 14(1): 2138092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36418193

RESUMEN

The propensity for some monoclonal antibodies (mAbs) to aggregate at physiological and manufacturing pH values can prevent their use as therapeutic molecules or delay time to market. Consequently, developability assessments are essential to select optimum candidates, or inform on mitigation strategies to avoid potential late-stage failures. These studies are typically performed in a range of buffer solutions because factors such as pH can dramatically alter the aggregation propensity of the test mAbs (up to 100-fold in extreme cases). A computational method capable of robustly predicting the aggregation propensity at the pH values of common storage buffers would have substantial value. Here, we describe a mAb aggregation prediction tool (MAPT) that builds on our previously published isotype-dependent, charge-based model of aggregation. We show that the addition of a homology model-derived hydrophobicity descriptor to our electrostatic aggregation model enabled the generation of a robust mAb developability indicator. To contextualize our aggregation scoring system, we analyzed 97 clinical-stage therapeutic mAbs. To further validate our approach, we focused on six mAbs (infliximab, tocilizumab, rituximab, CNTO607, MEDI1912 and MEDI1912_STT) which have been reported to cover a large range of aggregation propensities. The different aggregation propensities of the case study molecules at neutral and slightly acidic pH were correctly predicted, verifying the utility of our computational method.


Asunto(s)
Antineoplásicos Inmunológicos , Inmunoglobulina G , Inmunoglobulina G/química , Anticuerpos Monoclonales/química , Electricidad Estática , Interacciones Hidrofóbicas e Hidrofílicas
9.
J Med Chem ; 65(13): 8699-8712, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35730680

RESUMEN

We present a comprehensive analysis of all ring systems (both heterocyclic and nonheterocyclic) in clinical trial compounds and FDA-approved drugs. We show 67% of small molecules in clinical trials comprise only ring systems found in marketed drugs, which mirrors previously published findings for newly approved drugs. We also show there are approximately 450 000 unique ring systems derived from 2.24 billion molecules currently available in synthesized chemical space, and molecules in clinical trials utilize only 0.1% of this available pool. Moreover, there are fewer ring systems in drugs compared with those in clinical trials, but this is balanced by the drug ring systems being reused more often. Furthermore, systematic changes of up to two atoms on existing drug and clinical trial ring systems give a set of 3902 future clinical trial ring systems, which are predicted to cover approximately 50% of the novel ring systems entering clinical trials.

10.
MAbs ; 14(1): 2076295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634719

RESUMEN

Cysteine-rich knob domains can be isolated from the ultralong heavy-chain complementarity-determining region (CDR) 3, which are unique to a subset of bovine antibodies, to create antibody fragments of ~4 kDa. Advantageously, the N- and C- termini of these small binding domains are in close proximity, and we propose that this may offer a practical route to engineer extrinsic binding specificity into proteins. To test this, we transplanted knob domains into various loops of rat serum albumin, targeting sites that were distal to the interface with the neonatal Fc receptor. Using knob domains raised against the clinically validated drug target complement component C5, we produced potent inhibitors, which exhibit an extended plasma half-life in vivo via attenuated renal clearance and neonatal Fc receptor-mediated avoidance of lysosomal catabolism. The same approach was also used to modify a Camelid VHH, targeting a framework loop situated at the opposing end of the domain to the CDRs, to produce a small, single-chain bispecific antibody and a dual inhibitor of Complement C3 and C5. This study presents new protein inhibitors of the complement cascade and demonstrates a broadly applicable method to engineer target specificity within polypeptide chains, using bovine knob domains.


Asunto(s)
Anticuerpos Biespecíficos , Regiones Determinantes de Complementariedad , Animales , Anticuerpos Biespecíficos/química , Bovinos , Activación de Complemento , Regiones Determinantes de Complementariedad/química , Dominios Proteicos , Ratas
11.
ACS Chem Biol ; 16(9): 1757-1769, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34406751

RESUMEN

Cysteine-rich knob domains found in the ultralong complementarity determining regions of a subset of bovine antibodies are capable of functioning autonomously as 3-6 kDa peptides. While they can be expressed recombinantly in cellular systems, in this paper we show that knob domains are also readily amenable to a chemical synthesis, with a co-crystal structure of a chemically synthesized knob domain in complex with an antigen showing structural equivalence to the biological product. For drug discovery, following the immunization of cattle, knob domain peptides can be synthesized directly from antibody sequence data, combining the power and diversity of the bovine immune repertoire with the ability to rapidly incorporate nonbiological modifications. We demonstrate that, through rational design with non-natural amino acids, a paratope diversity can be massively expanded, in this case improving the efficacy of an allosteric peptide. As a potential route to further improve stability, we also performed head-to-tail cyclizations, exploiting the proximity of the N and C termini to synthesize functional, fully cyclic antibody fragments. Lastly, we highlight the stability of knob domains in plasma and, through pharmacokinetic studies, use palmitoylation as a route to extend the plasma half-life of knob domains in vivo. This study presents an antibody-derived medicinal chemistry platform, with protocols for solid-phase synthesis of knob domains, together with the characterization of their molecular structures, in vitro pharmacology, and pharmacokinetics.


Asunto(s)
Regiones Determinantes de Complementariedad/química , Fragmentos de Inmunoglobulinas/química , Péptidos Cíclicos/síntesis química , Secuencia de Aminoácidos , Animales , Bovinos , Fragmentos de Inmunoglobulinas/sangre , Fragmentos de Inmunoglobulinas/farmacología , Masculino , Modelos Moleculares , Péptidos Cíclicos/sangre , Péptidos Cíclicos/farmacocinética , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Ratas Sprague-Dawley , Técnicas de Síntesis en Fase Sólida , Espectrometría de Masas en Tándem , Termodinámica
12.
Front Immunol ; 12: 714055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434196

RESUMEN

Cleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer. Binding studies reveal these dimers are capable of crosslinking complement receptor 2 and preliminary cell-based analyses suggest they could modulate B cell activation to influence tolerogenic pathways. Altogether, insights into the physiologically-relevant functions of C3d(g) dimers gained from our findings will pave the way to enhancing our understanding surrounding the importance of complement in the fluid phase and could inform the design of novel therapies for immune system disorders in the future.


Asunto(s)
Complemento C3d/química , Modelos Moleculares , Multimerización de Proteína , Complemento C3/química , Complemento C3/inmunología , Complemento C3d/inmunología , Humanos , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Proteolisis , Proteínas Recombinantes/química , Relación Estructura-Actividad
13.
Front Chem ; 9: 668186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017820

RESUMEN

Over the last 10 years considerable progress has been made in the application of small molecules to modulating protein-protein interactions (PPIs), and the navigation from "undruggable" to a host of candidate molecules in clinical trials has been well-charted in recent, comprehensive reviews. Structure-based design has played an important role in this scientific journey, with three dimensional structures guiding medicinal chemistry efforts. However, the importance of two additional dimensions: movement and time is only now being realised, as increasing computing power, closely aligned with wet lab validation, is applied to the challenge. Protein dynamics are fundamental to biology and disease, and application to PPI drug discovery has massively widened the scope for new chemical entities to influence function from allosteric, and previously unreported, sites. In this forward-looking perspective we highlight exciting, new opportunities for small molecules to modulate disease biology, by adjusting the frequency profile of natural conformational sampling, through the stabilisation of clinically desired conformers of target proteins.

14.
Cytokine ; 142: 155476, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33706174

RESUMEN

The proinflammatory cytokines IL-17A and IL-17F have been identified as key drivers of a range of human inflammatory diseases, such as psoriasis, which has led to several therapeutic antibodies targeted at IL-17A. The two cytokines have been shown to tightly associate as functional homo and hetero dimers, which induce signalling via the formation of a cell surface signalling complex with a single copy of both IL-17RA and IL-17RC. Striking differences in affinity have been observed for IL-17RA binding to IL-17AA, IL-17AF and IL-17FF, however, the functional significance and molecular basis for this has remained unclear. We have obtained comprehensive backbone NMR assignments for full length IL-17AA (79%), IL-17AF (93%) and IL-17FF (89%), which show that the dimers adopt almost identical backbone topologies in solution to those observed in reported crystal structures. Analysis of the line widths and intensities of assigned backbone amide NMR signals has revealed striking differences in the conformational plasticity and dynamics of IL-17AA compared to both IL-17AF and IL-17FF. Our NMR data indicate that a number of regions of IL-17AA are interconverting between at least two distinct conformations on a relatively slow timescale. Such conformational heterogeneity has previously been shown to play an important role in the formation of many high affinity protein-protein complexes. The locations of the affected IL-17AA residues essentially coincides with the regions of both IL-17A and IL-17F previously shown to undergo significant structural changes on binding to IL-17RA. Substantially less conformational exchange was revealed by the NMR data for IL-17FF and IL-17AF. We propose that the markedly different conformational dynamic properties of the distinct functional IL-17 dimers plays a key role in determining their affinities for IL-17RA, with the more dynamic and plastic nature of IL-17AA contributing to the significantly tighter affinity observed for binding to IL-17RA. In contrast, the dynamic properties are expected to have little influence on the affinity of IL-17 dimers for IL-17RC, which has recently been shown to induce only small structural changes in IL-17FF upon binding.


Asunto(s)
Interleucina-17/química , Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Secuencia de Aminoácidos , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína
15.
Elife ; 102021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33570492

RESUMEN

Bovines have evolved a subset of antibodies with ultra-long heavy chain complementarity determining regions that harbour cysteine-rich knob domains. To produce high-affinity peptides, we previously isolated autonomous 3-6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors, and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential.


Antibodies are proteins produced by the immune system that can selectively bind to other molecules and modify their behaviour. Cows are highly equipped at fighting-off disease-causing microbes due to the unique shape of some of their antibodies. Unlike other jawed vertebrates, cows' antibodies contain an ultra-long loop region that contains a 'knob domain' which sticks out from the rest of the antibody. Recent research has shown that when detached, the knob domain behaves like an antibody fragment, and can independently bind to a range of different proteins. Antibody fragments are commonly developed in the laboratory to target proteins associated with certain diseases, such as arthritis and cancer. But it was unclear whether the knob domains from cows' antibodies could also have therapeutic potential. To investigate this, Macpherson et al. studied how knob domains attach to complement C5, a protein in the inflammatory pathway which is a drug target for various diseases, including severe COVID-19. The experiments identified various knob domains that bind to complement C5 and inhibits its activity by altering its structure or movement. Further tests studying the structure of these interactions, led to the discovery of a common mechanism by which inhibitors can modify the behaviour of this inflammatory protein. Complement C5 is involved in numerous molecular pathways in the immune system, which means many of the drugs developed to inhibit its activity can also leave patients vulnerable to infection. However, one of the knob domains identified by Macpherson et al. was found to reduce the activity of complement C5 in some pathways, whilst leaving other pathways intact. This could potentially reduce the risk of bacterial infections which sometimes arise following treatment with these types of inhibitors. These findings highlight a new approach for developing drug inhibitors for complement C5. Furthermore, the ability of knob domains to bind to multiple sites of complement C5 suggests that this fragment could be used to target proteins associated with other diseases.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Complemento C5/antagonistas & inhibidores , Descubrimiento de Drogas , Péptidos/química , Péptidos/farmacología , Animales , Bovinos , Complemento C5/química , Complemento C5/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica/efectos de los fármacos
16.
Nat Commun ; 12(1): 582, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495441

RESUMEN

Tumour necrosis factor (TNF) is a trimeric protein which signals through two membrane receptors, TNFR1 and TNFR2. Previously, we identified small molecules that inhibit human TNF by stabilising a distorted trimer and reduce the number of receptors bound to TNF from three to two. Here we present a biochemical and structural characterisation of the small molecule-stabilised TNF-TNFR1 complex, providing insights into how a distorted TNF trimer can alter signalling function. We demonstrate that the inhibitors reduce the binding affinity of TNF to the third TNFR1 molecule. In support of this, we show by X-ray crystallography that the inhibitor-bound, distorted, TNF trimer forms a complex with a dimer of TNFR1 molecules. This observation, along with data from a solution-based network assembly assay, leads us to suggest a model for TNF signalling based on TNF-TNFR1 clusters, which are disrupted by small molecule inhibitors.


Asunto(s)
Multimerización de Proteína/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/química , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Necrosis Tumoral alfa/química , Algoritmos , Animales , Unión Competitiva/efectos de los fármacos , Humanos , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Factor de Necrosis Tumoral alfa/metabolismo
17.
Nat Commun ; 12(1): 583, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495445

RESUMEN

We have recently described the development of a series of small-molecule inhibitors of human tumour necrosis factor (TNF) that stabilise an open, asymmetric, signalling-deficient form of the soluble TNF trimer. Here, we describe the generation, characterisation, and utility of a monoclonal antibody that selectively binds with high affinity to the asymmetric TNF trimer-small molecule complex. The antibody helps to define the molecular dynamics of the apo TNF trimer, reveals the mode of action and specificity of the small molecule inhibitors, acts as a chaperone in solving the human TNF-TNFR1 complex crystal structure, and facilitates the measurement of small molecule target occupancy in complex biological samples. We believe this work defines a role for monoclonal antibodies as tools to facilitate the discovery and development of small-molecule inhibitors of protein-protein interactions.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Complejos Multiproteicos/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Anticuerpos Monoclonales/farmacología , Células Cultivadas , Cristalografía por Rayos X , Epítopos/química , Epítopos/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/química , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Necrosis Tumoral alfa/química
18.
Front Immunol ; 11: 1894, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973785

RESUMEN

Interleukin (IL)-17A is a key driver of inflammation and the principal target of anti-IL-17 therapeutic monoclonal antibodies. IL-17A, and its structurally similar family member IL-17F, have been shown to be functionally dysregulated in certain human immune-mediated inflammatory diseases such as psoriasis, psoriatic arthritis, and axial spondyloarthritis. Given the overlapping biology of these two cytokines, we postulated that dual neutralization of IL-17A and IL-17F may provide a greater depth of clinical response in IL-17-mediated diseases than IL-17A inhibition alone. We identified 496.g1, a humanized antibody with strong affinity for IL-17A but poor affinity for IL-17F. Affinity maturation of 496.g1 to 496.g3 greatly enhanced the affinity of the Fab fragment for IL-17F while retaining strong binding to IL-17A. As an IgG1, the affinity for IL-17A and IL-17F was 3.2 pM and 23 pM, respectively. Comparison of 496.g3 IgG1 with the commercially available anti-IL-17A monoclonal antibodies ixekizumab and secukinumab, by surface plasmon resonance and in a human in vitro IL-17A functional assay, showed that 496.g3 and ixekizumab display equivalent affinity for IL-17A, and that both antibodies are markedly more potent than secukinumab. In contrast to ixekizumab and secukinumab, 496.g3 exhibited the unique feature of also being able to neutralize the biological activity of IL-17F. Therefore, antibody 496.g3 was selected for clinical development for its ability to neutralize the biologic function of both IL-17A and IL-17F and was renamed bimekizumab (formerly UCB4940). Early clinical data in patients with psoriasis, in those with psoriatic arthritis, and from the Phase 2 studies in psoriasis, psoriatic arthritis, and ankylosing spondylitis, are encouraging and support the targeted approach of dual neutralization of IL-17A and IL-17F. Taken together, these findings provide the rationale for the continued clinical evaluation of bimekizumab in patients with immune-mediated inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/farmacología , Interleucina-17/antagonistas & inhibidores , Animales , Antiinflamatorios/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Células CHO , Simulación por Computador , Cricetulus , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Macaca fascicularis , Modelos Biológicos , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Psoriasis/metabolismo , Espondilitis Anquilosante/tratamiento farmacológico , Espondilitis Anquilosante/inmunología , Espondilitis Anquilosante/metabolismo
19.
PLoS Biol ; 18(9): e3000821, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32886672

RESUMEN

As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques.


Asunto(s)
Anticuerpos/química , Disulfuros/aislamiento & purificación , Dominios de Inmunoglobulinas , Fragmentos de Péptidos/aislamiento & purificación , Dominios y Motivos de Interacción de Proteínas , Animales , Anticuerpos/inmunología , Anticuerpos/metabolismo , Afinidad de Anticuerpos , Formación de Anticuerpos , Especificidad de Anticuerpos , Antígenos/genética , Antígenos/inmunología , Linfocitos B/fisiología , Bovinos , Complemento C5/química , Complemento C5/genética , Complemento C5/inmunología , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Disulfuros/química , Disulfuros/inmunología , Mapeo Epitopo/métodos , Humanos , Inmunización , Dominios de Inmunoglobulinas/genética , Modelos Moleculares , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Dominios y Motivos de Interacción de Proteínas/genética
20.
Protein Eng Des Sel ; 32(6): 277-288, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31868219

RESUMEN

Native state aggregation is an important concern in the development of therapeutic antibodies. Enhanced knowledge of mAb native state aggregation mechanisms would permit sequence-based selection and design of therapeutic mAbs with improved developability. We investigated how electrostatic interactions affect the native state aggregation of seven human IgG1 and IgG4P mAb isotype pairs, each pair having identical variable domains that are different for each set of IgG1 and IgG4P constructs. Relative aggregation propensities were determined at pH 7.4, representing physiological conditions, and pH 5.0, representing commonly used storage conditions. Our work indicates that the net charge state of variable domains relative to the net charge state of the constant domains is predominantly responsible for the different native state aggregation behavior of IgG1 and IgG4P mAbs. This observation suggests that the global net charge of a multi domain protein is not a reliable predictor of aggregation propensity. Furthermore, we demonstrate a design strategy in the frameworks of variable domains to reduce the native state aggregation propensity of mAbs identified as being aggregation-prone. Importantly, substitution of specifically identified residues with alternative, human germline residues, to optimize Fv charge, resulted in decreased aggregation potential at pH 5.0 and 7.4, thus increasing developability.


Asunto(s)
Sustitución de Aminoácidos , Inmunoglobulina G/química , Inmunoglobulina G/genética , Agregado de Proteínas/genética , Ingeniería de Proteínas , Electricidad Estática , Inmunoglobulina G/metabolismo , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA