Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Physiol Meas ; 45(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38507792

RESUMEN

Objective. Surface mechanomyography (sMMG) can measure oscillations of the activated muscle fibers in three axes (i.e.X,Y, andZ-axes) and has been used to describe motor unit activation patterns (X-axis). The application of blood flow restriction (BFR) is common in exercise studies, but the cuff may restrict muscle fiber oscillations. Therefore, the purpose of this investigation was to examine the acute effects of submaximal, fatiguing exercise with and without BFR on sMMG amplitude in theX,Y, andZ-axes among female participants.Approach. Sixteen females (21 ± 1 years) performed two separate exercise bouts to volitional exhaustion that consisted of unilateral, submaximal (50% maximal voluntary isometric contraction [MVIC]) intermittent, isometric, leg extensions with and without BFR. sMMG was recorded and examined across percent time to exhaustion (%TTE) in 20% increments. Separate 2-way repeated measures ANOVA models were constructed: (condition [BFR, non-BFR]) × (time [20, 40, 60, 80, and 100% TTE]) to examine absolute (m·s-2) and normalized (% of pretest MVIC) sMMG amplitude in theX-(sMMG-X),Y-(sMMG-Y), andZ-(sMMG-Z) axes.Main results. The absolute sMMG-X amplitude responses were attenuated with the application of BFR (mean ± SD = 0.236 ± 0.138 m·s-2) relative to non-BFR (0.366 ± 0.199 m·s-2, collapsed across time) and for sMMG-Y amplitude at 60%-100% of TTE (BFR range = 0.213-0.232 m·s-2versus non-BFR = 0.313-0.445 m·s-2). Normalizing sMMG to pretest MVIC removed most, but not all the attenuation which was still evident for sMMG-Y amplitude at 100% of TTE between BFR (72.9 ± 47.2%) and non-BFR (98.9 ± 53.1%). Interestingly, sMMG-Z amplitude was not affected by the application of BFR and progressively decreased across %TTE (0.332 ± 0.167 m·s-2to 0.219 ± 0.104 m·s-2, collapsed across condition.)Significance. The application of BFR attenuated sMMG-X and sMMG-Y amplitude, although normalizing sMMG removed most of this attenuation. Unlike theXandY-axes, sMMG-Z amplitude was not affected by BFR and progressively decreased across each exercise bout potentially tracking the development of muscle fatigue.


Asunto(s)
Fatiga Muscular , Entrenamiento de Fuerza , Humanos , Femenino , Fatiga Muscular/fisiología , Ejercicio Físico/fisiología , Contracción Isométrica/fisiología , Flujo Sanguíneo Regional , Modalidades de Fisioterapia , Músculo Esquelético/fisiología , Electromiografía , Entrenamiento de Fuerza/métodos
2.
J Musculoskelet Neuronal Interact ; 24(1): 38-46, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427367

RESUMEN

BFR) applied during sprint interval training (SIT) on performance and neuromuscular function. METHODS: Fifteen men completed a randomized bout of SIT with CBFR, IBFR, and without BFR (No-BFR), consisting of 2, 30-s maximal sprints on a cycle ergometer with a resistance of 7.5% of body mass. Concentric peak torque (CPT), maximal voluntary isometric contraction (MVIC) torque, and muscle thickness (MT) were measured before and after SIT, including surface electromyography (sEMG) recorded during the strength assessments. Peak and mean revolutions per minute (RPM) were measured during SIT and power output was examined relative to physical working capacity at the fatigue threshold (PWCFT). RESULTS: CPT and MVIC torque decreased from pre-SIT (220.3±47.6 Nm and 355.1±72.5 Nm, respectively) to post-SIT (147.9±27.7 Nm and 252.2±45.5 Nm, respectively, all P<0.05), while MT increased (1.77±0.31 cm to 1.96±0.30 cm). sEMG mean power frequency decreased during CPT (-12.8±10.5%) and MVIC (-8.7±10.2%) muscle actions. %PWCFT was greater during No-BFR (414.2±121.9%) than CBFR (375.9±121.9%). CONCLUSION: SIT with or without BFR induced comparable alterations in neuromuscular fatigue and sprint performance across all conditions, without affecting neuromuscular function.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Músculo Esquelético , Humanos , Masculino , Electromiografía , Contracción Isométrica/fisiología , Fatiga Muscular , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología , Torque
3.
J Musculoskelet Neuronal Interact ; 23(2): 165-174, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259656

RESUMEN

OBJECTIVES: The purpose of this investigation was to examine the acute effects of low-load blood flow restriction (LLBFR) and low-load (LL) resistance exercise on muscle excitation, neuromuscular efficiency, and average torque. METHODS: Eleven men (age±SD=22±3yrs) randomly performed LLBFR and LL that consisted of 30 unilateral leg extensions at 30% of one-repetition maximum while surface electromyography (sEMG) and torque were simultaneously assessed. Polynomial regression analyses and slope comparisons were performed to examine patterns of responses and rates of change. RESULTS: sEMG amplitude increased for LLBFR (9 of 11) and LL (8 of 11) and between composite responses (R2=0.939-0.981). For LLBFR, sEMG amplitude increased to a greater extent for 5 of the 11 individual and for the composite responses. Similarly, neuromuscular efficiency decreased for LLBFR (8 of 11) and LL (5 of 11) as well as the composite responses r2=0.902-0.929, but the decrease was larger for LLBFR than LL for the individual (4 of 11) responses. For average submaximal concentric torque, there were individual increases, decreases, and no changes for the composite responses (R2=0.198-0.325). CONCLUSION: LLBFR elicited greater fatigue-induced increases in muscle excitation and decreases in neuromuscular efficiency than LL, but neither LLBFR nor LL affected average submaximal concentric torque.


Asunto(s)
Músculo Esquelético , Entrenamiento de Fuerza , Humanos , Masculino , Electromiografía , Ejercicio Físico/fisiología , Músculo Esquelético/fisiología , Torque , Adulto Joven , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA