Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(6): 1162-1167, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29339497

RESUMEN

Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s-1 and 0.01 ms-1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material.

2.
Science ; 333(6038): 81-4, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21719677

RESUMEN

In military planning, it is important to be able to estimate not only the number of fatalities but how often attacks that result in fatalities will take place. We uncovered a simple dynamical pattern that may be used to estimate the escalation rate and timing of fatal attacks. The time difference between fatal attacks by insurgent groups within individual provinces in both Afghanistan and Iraq, and by terrorist groups operating worldwide, gives a potent indicator of the later pace of lethal activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...