Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 63(6): 18, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35727180

RESUMEN

Purpose: To develop a mouse model of human dry eye disease (DED) for investigation of sex differences in autoimmune-associated dry eye pathology. Methods: Ocular surface disease was assessed by quantifying corneal epithelial damage with lissamine green stain in the NOD.H-2h4,IFNγ-/-,CD28-/- (NOD.H-2h4 DKO) mouse model of Sjögren's syndrome (SS). Lacrimal gland function was assessed by tear volume quantification with phenol red thread and lacrimal gland inflammation (i.e., dacryoadenitis) was assessed by quantification of immune cell foci, flow cytometric analysis of immune cell composition, and expression of proinflammatory markers. Results: The NOD.H-2h4 DKO mouse model of SS exhibits greater age-dependent increases in corneal damage than in NOD.H-2h4 parental mice and demonstrates an earlier disease onset in females compared to males. The severity of ocular surface disease correlates with loss of goblet cell density, increased conjunctivitis, and dacryoadenitis that is more pronounced in NOD.H-2h4 DKO than NOD.H-2h4 mice. B cells dominate lacrimal infiltrates in 16-week-old NOD.H-2h4 and NOD.H-2h4 DKO mice, but T helper cells and macrophages are also present. Lacrimal gland expression of proinflammatory genes, including the P2X7 and P2Y2 purinergic receptors, is greater in NOD.H-2h4 DKO than NOD.H-2h4 mice and correlates with dacryoadenitis. Conclusions: Our results demonstrate for the first time that autoimmune dry eye disease occurs in both sexes of NOD.H-2h4 DKO and NOD.H-2h4 mice, with earlier onset in female NOD.H-2h4 DKO mice when compared to males of the same strain. This study demonstrates that both NOD.H-2h4 and NOD.H-2h4 DKO mice are novel models that closely resemble SS-related and sex-dependent DED.


Asunto(s)
Dacriocistitis , Síndromes de Ojo Seco , Aparato Lagrimal , Síndrome de Sjögren , Animales , Dacriocistitis/patología , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/metabolismo , Femenino , Aparato Lagrimal/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Síndrome de Sjögren/genética , Síndrome de Sjögren/metabolismo
2.
J Mol Neurosci ; 27(2): 225-44, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16186634

RESUMEN

The cellular localization of voltage-gated calcium channels (VGCCs) and synaptic vesicle-associated proteins, SV2, synapsin I, and vesicle-associated membrane protein (VAMP) (synaptobrevin), was investigated in the guinea pig cochlea using immunocytochemistry and confocal laser scanning microscopy. Reactivity, in guinea pig, of antibodies to the alpha1 subunits of L-type, alpha1C [Cav1.2] and alpha 1D [Cav1.3]; P/Q-type, alpha1A [Cav2.1]; and R-type, a1E [Cav2.3] high voltage-activated calcium channels, was determined by Western blotting and immunolabeling of cerebellum. In the cochlea the sensory inner hair cells of the organ of Corti displayed strong intracellular staining, predominantly localized to their basolateral poles, with an antibody directed against the alpha1C subunit. Some alpha1C labeling was also observed in the inner pillar cells, in cell bodies of afferent neurons in the spiral ganglion, and in the inferior region of the spiral ligament. The supporting pillar cells were strongly immunoreactive throughout for alpha1D, but no alpha1D labeling of the inner hair cells was seen. The alpha1A subunit showed a cytoplasmic distribution in all three rows of outer hair cells. alpha1E labeling localized to the outer hair cells, predominantly in the subcuticular plate region, and also to nerve fiber bundles beneath these hair cells. Strong immunoreactivity was consistently seen with antibodies directed against SV2 and synapsin I in neuronal structures surrounding the basolateral surfaces of both the inner and outer hair cells but was absent from the sensory cells themselves. VAMP labeling was found throughout the cytoplasm of the inner hair cells and in neuronal structures beneath the hair cells. These results reveal a differential distribution of VGCC-types in the sensory and nonsensory elements of the guinea pig cochlea, with the inner hair cells expressing alpha1C L-type channels and VAMP but not synapsin I or SV2.


Asunto(s)
Canales de Calcio/metabolismo , Cóclea/metabolismo , Cobayas , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Cóclea/anatomía & histología , Femenino , Masculino , Modelos Anatómicos , Proteínas R-SNARE/metabolismo , Ratas , Ratas Wistar , Vesículas Sinápticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA