Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Ther Adv Med Oncol ; 16: 17588359241289200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39429467

RESUMEN

Background: Dysregulated pathways in cancer may be hub addicted. Identifying these dysregulated networks for targeting might lead to novel therapeutic options. Objective: Considering the hypothesis that central hubs are associated with increased lethality, identifying key hub targets within central networks could lead to the development of novel drugs with improved efficacy in advanced metastatic solid tumors. Design: Exploring transcriptomic data (22,000 gene products) from the WINTHER trial (N = 101 patients with various metastatic cancers), in which both tumor and normal organ-matched tissue were available. Methods: A retrospective in silico analysis of all genes in the transcriptome was conducted to identify genes different in expression between tumor and normal tissues (paired t-test) and to determine their association with survival outcomes using survival analysis (Cox proportional hazard regression algorithm). Based on the biological relevance of the identified genes, hub targets of interest within central networks were then pinpointed. Patients were grouped based on the expression level of these genes (K-mean clustering), and the association of these groups with survival was examined (Cox proportional hazard regression algorithm, Forest plot, and Kaplan-Meier plot). Results: We identified four key central hub genes-PLOD3, ARHGAP11A, RNF216, and CDCA8, for which high expression in tumor tissue compared to analogous normal tissue had the most significant correlation with worse outcomes. The correlation was independent of tumor or treatment type. The combination of the four genes showed the highest significance and correlation with the poorer outcome: overall survival (hazard ratio (95% confidence interval (CI)) = 10.5 (3.43-31.9) p = 9.12E-07 log-rank test in a Cox proportional hazard regression model). Findings were validated in independent cohorts. Conclusion: The expression of PLOD3, ARHGAP11A, RNF216, and CDCA8 constitute, when combined, a prognostic tool, agnostic of tumor type and previous treatments. These genes represent potential targets for intercepting central hub networks in various cancers, offering avenues for novel therapeutic interventions.

2.
Ther Adv Med Oncol ; 15: 17588359231156382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025260

RESUMEN

Background: The current model of clinical drug development in oncology displays major limitations due to a high attrition rate in patient enrollment in early phase trials and a high failure rate of drugs in phase III studies. Objective: Integrating transcriptomics for selection of patients has the potential to achieve enhanced speed and efficacy of precision oncology trials for any targeted therapies or immunotherapies. Methods: Relative gene expression level in the metastasis and normal organ-matched tissues from the WINTHER database was used to estimate in silico the potential clinical benefit of specific treatments in a variety of metastatic solid tumors. Results: As example, high mRNA expression in tumor tissue compared to analogous normal tissue of c-MET and its ligand HGF correlated in silico with shorter overall survival (OS; p < 0.0001) and may constitute an independent prognostic marker for outcome of patients with metastatic solid tumors, suggesting a strategy to identify patients most likely to benefit from MET-targeted treatments. The prognostic value of gene expression of several immune therapy targets (PD-L1, CTLA4, TIM3, TIGIT, LAG3, TLR4) was investigated in non-small-cell lung cancers and colorectal cancers (CRCs) and may be useful to optimize the development of their inhibitors, and opening new avenues such as use of anti-TLR4 in treatment of patients with metastatic CRC. Conclusion: This in silico approach is expected to dramatically decrease the attrition of patient enrollment and to simultaneously increase the speed and detection of early signs of efficacy. The model may significantly contribute to lower toxicities. Altogether, our model aims to overcome the limits of current approaches.

3.
Ther Adv Med Oncol ; 14: 17588359221133893, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324736

RESUMEN

Background: SARS-CoV-2 (COVID-19) elicits a T-cell antigen-mediated immune response of variable efficacy. To understand this variability, we explored transcriptomic expression of angiotensin-converting enzyme 2 (ACE2, the SARS-CoV-2 receptor) and of immunoregulatory genes in normal lung tissues from patients with non-small cell lung cancer (NSCLC). Methods: This study used the transcriptomic and the clinical data for NSCLC patients generated during the CHEMORES study [n = 123 primary resected (early-stage) NSCLC] and the WINTHER clinical trial (n = 32 metastatic NSCLC). Results: We identified patient subgroups with high and low ACE2 expression (p = 1.55 × 10-19) in normal lung tissue, presumed to be at higher and lower risk, respectively, of developing severe COVID-19 should they become infected. ACE2 transcript expression in normal lung tissues (but not in tumor tissue) of patients with NSCLC was higher in individuals with more advanced disease. High-ACE2 expressors had significantly higher levels of CD8+ cytotoxic T lymphocytes and natural killer cells but with presumably impaired function by high Thymocyte Selection-Associated High Mobility Group Box Protein TOX (TOX) expression. In addition, immune checkpoint-related molecules - PD-L1, CTLA-4, PD-1, and TIGIT - are more highly expressed in normal (but not tumor) lung tissues; these molecules might dampen immune response to either viruses or cancer. Importantly, however, high inducible T-cell co-stimulator (ICOS), which can amplify immune and cytokine reactivity, significantly correlated with high ACE2 expression in univariable analysis of normal lung (but not lung tumor tissue). Conclusions: We report a normal lung immune-tolerant state that may explain a potential comorbidity risk between two diseases - NSCLC and susceptibility to COVID-19 pneumonia. Further, a NSCLC patient subgroup has normal lung tissue expressing high ACE2 and high ICOS transcripts, the latter potentially promoting a hyperimmune response, and possibly leading to severe COVID-19 pulmonary compromise.

4.
JCO Precis Oncol ; 6: e2200072, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36108261

RESUMEN

PURPOSE: The prognosis of patients with non-small-cell lung cancer (NSCLC), traditionally determined by anatomic histology and TNM staging, neglects the biological features of the tumor that may be important in determining patient outcome and guiding therapeutic interventions. Identifying patients with NSCLC at increased risk of recurrence after curative-intent surgery remains an important unmet need so that known effective adjuvant treatments can be offered to those at highest risk of recurrence. METHODS: Relative gene expression level in the primary tumor and normal bronchial tissues was used to retrospectively assess their association with disease-free survival (DFS) in a cohort of 120 patients with NSCLC who underwent curative-intent surgery. RESULTS: Low versus high Digital Display Precision Predictor (DDPP) score (a measure of relative gene expression) was significantly associated with shorter DFS (highest recurrence risk; P = .006) in all patients and in patients with TNM stages 1-2 (P = .00051; n = 83). For patients with stages 1-2 and low DDPP score (n = 29), adjuvant chemotherapy was associated with improved DFS (P = .0041). High co-overexpression of CTLA-4, PD-L1, and ICOS in normal lung (28 of 120 patients) was also significantly associated with decreased DFS (P = .0013), suggesting an immune tolerance to tumor neoantigens in some patients. Patients with DDPP low and immunotolerant normal tissue had the shortest DFS (P = 2.12E-11). CONCLUSION: TNM stage, DDPP score, and immune competence status of normal lung are independent prognostic factors in multivariate analysis. Our findings open new avenues for prospective prognostic assessment and treatment assignment on the basis of transcriptomic profiling of tumor and normal lung tissue in patients with NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Antígeno B7-H1/análisis , Antígeno CTLA-4/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Pulmón/química , Neoplasias Pulmonares/tratamiento farmacológico , Estudios Prospectivos , Estudios Retrospectivos , Transcriptoma
5.
Cancer Med ; 11(14): 2790-2800, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35307972

RESUMEN

BACKGROUND: The Worldwide Innovative Network (WIN) Consortium has developed the Simplified Interventional Mapping System (SIMS) to better define the cancer molecular milieu based on genomics/transcriptomics from tumor and analogous normal tissue biopsies. SPRING is the first trial to assess a SIMS-based tri-therapy regimen in advanced non-small cell lung cancer (NSCLC). METHODS: Patients with advanced NSCLC (no EGFR, ALK, or ROS1 alterations; PD-L1 unrestricted; ≤2 prior therapy lines) received avelumab, axitinib, and palbociclib (3 + 3 dose escalation design). RESULTS: Fifteen patients were treated (five centers, four countries): six at each of dose levels 1 (DL1) and DL2; three at DL3. The most common ≥Grade 3 adverse events were neutropenia, hypertension, and fatigue. The recommended Phase II dose (RP2D) was DL1: avelumab 10 mg/kg IV q2weeks, axitinib 3 mg po bid, and palbociclib 75 mg po daily (7 days off/21 days on). Four patients (27%) achieved a partial response (PR) (progression-free survival [PFS]: 14, 24, 25 and 144+ weeks), including two after progression on pembrolizumab. Four patients attained stable disease (SD) that lasted ≥24 weeks: 24, 27, 29, and 64 weeks. At DL1 (RP2D), four of six patients (66%) achieved stable disease (SD) ≥6 months/PR (2 each). Responders included patients with no detectable PD-L1 expression and low tumor mutational burden. CONCLUSIONS: Overall, eight of 15 patients (53%) achieved clinical benefit (SD ≥ 24 weeks/PR) on the avelumab, axitinib, and palbociclib combination. This triplet showed antitumor activity in NSCLC, including in tumors post-pembrolizumab progression, and was active at the RP2D, which was well tolerated. NCT03386929 clinicaltrial.gov.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Axitinib/uso terapéutico , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Piperazinas , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Piridinas
6.
Cell ; 184(9): 2487-2502.e13, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33857424

RESUMEN

Precision oncology has made significant advances, mainly by targeting actionable mutations in cancer driver genes. Aiming to expand treatment opportunities, recent studies have begun to explore the utility of tumor transcriptome to guide patient treatment. Here, we introduce SELECT (synthetic lethality and rescue-mediated precision oncology via the transcriptome), a precision oncology framework harnessing genetic interactions to predict patient response to cancer therapy from the tumor transcriptome. SELECT is tested on a broad collection of 35 published targeted and immunotherapy clinical trials from 10 different cancer types. It is predictive of patients' response in 80% of these clinical trials and in the recent multi-arm WINTHER trial. The predictive signatures and the code are made publicly available for academic use, laying a basis for future prospective clinical studies.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Mutaciones Letales Sintéticas , Transcriptoma/efectos de los fármacos , Anciano , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/inmunología , Ensayos Clínicos como Asunto , Femenino , Estudios de Seguimiento , Humanos , Inmunoterapia , Masculino , Neoplasias/genética , Neoplasias/patología , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos , Tasa de Supervivencia
7.
NPJ Precis Oncol ; 5(1): 33, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911192

RESUMEN

The expanding targeted therapy landscape requires combinatorial biomarkers for patient stratification and treatment selection. This requires simultaneous exploration of multiple genes of relevant networks to account for the complexity of mechanisms that govern drug sensitivity and predict clinical outcomes. We present the algorithm, Digital Display Precision Predictor (DDPP), aiming to identify transcriptomic predictors of treatment outcome. For example, 17 and 13 key genes were derived from the literature by their association with MTOR and angiogenesis pathways, respectively, and their expression in tumor versus normal tissues was associated with the progression-free survival (PFS) of patients treated with everolimus or axitinib (respectively) using DDPP. A specific eight-gene set best correlated with PFS in six patients treated with everolimus: AKT2, TSC1, FKB-12, TSC2, RPTOR, RHEB, PIK3CA, and PIK3CB (r = 0.99, p = 5.67E-05). A two-gene set best correlated with PFS in five patients treated with axitinib: KIT and KITLG (r = 0.99, p = 4.68E-04). Leave-one-out experiments demonstrated significant concordance between observed and DDPP-predicted PFS (r = 0.9, p = 0.015) for patients treated with everolimus. Notwithstanding the small cohort and pending further prospective validation, the prototype of DDPP offers the potential to transform patients' treatment selection with a tumor- and treatment-agnostic predictor of outcomes (duration of PFS).

8.
Cancers (Basel) ; 12(9)2020 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-32899953

RESUMEN

Although fine-needle aspiration cytology (FNAC) is helpful in determining whether thyroid nodules are benign or malignant, this distinction remains a cytological challenge in follicular neoplasms. Identification of genomic alterations in cytological specimens with direct and routine techniques would therefore have great clinical value. A series of 153 cases consisting of 72 and 81 histopathologically confirmed classic follicular adenomas (cFAs) and classic follicular thyroid carcinomas (cFTCs), respectively, was studied by means of different molecular techniques in three different cohorts of patients (pts). In the first cohort (training set) of 66 pts, three specific alterations characterized by array comparative genomic hybridization (aCGH) were exclusively found in half of cFTCs. These structural abnormalities corresponded to losses of 1p36.33-35.1 and 22q13.2-13.31, and gain of whole chromosome X. The second independent cohort (validation set) of 60 pts confirmed these data on touch preparations of frozen follicular neoplasms by triple DNA fluorescent in situ hybridization using selected commercially available probes. The third cohort, consisting of 27 archived cytological samples from an equal number of pts that had been obtained for preoperative FNAC and morphologically classified as and histologically verified to be follicular neoplasms, confirmed our previous findings and showed the feasibility of the DNA FISH (DNA fluorescent in situ hybridization) assay. All together, these data suggest that our triple DNA FISH diagnostic assay may detect 50% of cFTCs with a specificity higher than 98% and be useful as a low-cost adjunct to cytomorphology to help further classify follicular neoplasms on already routinely stained cytological specimens.

9.
Pharmaceutics ; 12(5)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354024

RESUMEN

Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy. This strategy takes advantage of the biocompatibility of the delivery system, its ability to locate the tumor site and also the predisposition of cancer cells to come in functional contact with the adipocytes from the tumor microenvironment for metabolic sustenance. Also, their exosomal content can be used in the context of cancer stem cell reprogramming or as a delivery vehicle for different cargos, like non-coding nucleic acids. Moreover, the process of adipocytes isolation, processing and charging is quite straightforward, with minimal economical expenses. The present review comprehensively presents the role of adipocytes in cancer (in the context of obese and non-obese individuals), the main methods for isolation and characterization and also the current therapeutic applications of these cells as delivery platforms in the oncology sector.

10.
Cancers (Basel) ; 12(2)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012717

RESUMEN

Critical processes such as growth, invasion, and metastasis of cancer cells are sustained via bidirectional cell-to-cell communication in tissue complex environments. Such communication involves the secretion of soluble factors by stromal cells and/or cancer cells within the tumor microenvironment (TME). Both stromal and cancer cells have been shown to export bilayer nanoparticles: encapsulated regulatory molecules that contribute to cell-to-cell communication. These nanoparticles are known as extracellular vesicles (EVs) being classified into exosomes, microvesicles, and apoptotic bodies. EVs carry a vast repertoire of molecules such as oncoproteins and oncopeptides, DNA fragments from parental to target cells, RNA species (mRNAs, microRNAs, and long non-coding RNA), and lipids, initiating phenotypic changes in TME. According to their specific cargo, EVs have crucial roles in several early and late processes associated with tumor development and metastasis. Emerging evidence suggests that EVs are being investigated for their implication in early cancer detection, monitoring cancer progression and chemotherapeutic response, and more relevant, the development of novel targeted therapeutics. In this study, we provide a comprehensive understanding of the biophysical properties and physiological functions of EVs, their implications in TME, and highlight the applicability of EVs for the development of cancer diagnostics and therapeutics.

11.
Int J Nanomedicine ; 14: 6165-6178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447558

RESUMEN

PURPOSE: Surface-enhanced Raman scattering (SERS) spectroscopy on serum and other biofluids for cancer diagnosis represents an emerging field, which has shown promising preliminary results in several types of malignancies. The purpose of this study was to demonstrate that SERS spectroscopy on serum can be employed for the differential diagnosis between five of the leading malignancies, ie, breast, colorectal, lung, ovarian and oral cancer. PATIENTS AND METHODS: Serum samples were acquired from healthy volunteers (n=39) and from patients diagnosed with breast (n=42), colorectal (n=109), lung (n=33), oral (n=17), and ovarian cancer (n=13), comprising n=253 samples in total. SERS spectra were acquired using a 532 nm laser line as excitation source, while the SERS substrates were represented by Ag nanoparticles synthesized by reduction with hydroxylamine. The classification accuracy yielded by SERS was assessed by principal component analysis-linear discriminant analysis (PCA-LDA). RESULTS: The sensitivity and specificity in discriminating between cancer patients and controls was 98% and 91%, respectively. Cancer samples were correctly assigned to their corresponding cancer types with an accuracy of 88% for oral cancer, 86% for colorectal cancer, 80% for ovarian cancer, 76% for breast cancer and 59% for lung cancer. CONCLUSION: SERS on serum represents a promising strategy of diagnosing cancer which can discriminate between cancer patients and controls, as well as between cancer types such as breast, colorectal, lung ovarian and oral cancer.


Asunto(s)
Neoplasias/diagnóstico , Espectrometría Raman/métodos , Anciano , Neoplasias de la Mama/sangre , Neoplasias de la Mama/diagnóstico , Estudios de Casos y Controles , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/diagnóstico , Diagnóstico Diferencial , Análisis Discriminante , Femenino , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Masculino , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Persona de Mediana Edad , Neoplasias de la Boca/sangre , Neoplasias de la Boca/diagnóstico , Neoplasias/sangre , Neoplasias Ováricas/sangre , Neoplasias Ováricas/diagnóstico , Análisis de Componente Principal , Plata/química
12.
Cancer Immunol Res ; 7(7): 1120-1134, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31164357

RESUMEN

mAb-based blocking of the immune checkpoints involving the CTLA4-B7 and PD1-PDL1 inhibitory axes enhance T-cell-based adaptive immune responses in patients with cancer. We show here that antitumor responses by natural killer (NK) cells can be enhanced by a checkpoint-blocking mAb, 14-25-9, which we developed against proliferating cell nuclear antigen (PCNA). PCNA is expressed on the surface of cancer cells and acts as an inhibitory ligand for the NK-cell receptor, NKp44-isoform1. We tested for cytoplasmic- and membrane-associated PCNA by FACS- and ImageStream-based staining of cell lines and IHC of human cancer formalin fixed, paraffin embedded tissues. The mAb, 14-25-9, inhibited binding of chimeric NKp44 receptor to PCNA and mostly stained the cytoplasm and membrane of tumor cells, whereas commercial antibody (clone PC10) stained nuclear PCNA. NK functions were measured using ELISA-based IFNγ secretion assays and FACS-based killing assays. The NK92-NKp44-1 cell line and primary human NK cells showed increased IFNγ release upon coincubation with mAb 14-25-9 and various solid tumor cell lines and leukemias. Treatment with 14-25-9 also increased NK cytotoxic activity. In vivo efficacy was evaluated on patient-derived xenografts (PDX)-bearing NSG mice. In PDX-bearing mice, intravenous administration of mAb 14-25-9 increased degranulation (CD107a expression) of intratumorally injected patient autologous or allogeneic NK cells, as well as inhibited tumor growth when treated long term. Our study describes a mAb against the NKp44-PCNA innate immune checkpoint that can enhance NK-cell antitumor activity both in vitro and in vivo.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Citotoxicidad Inmunológica/inmunología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Células Asesinas Naturales/efectos de los fármacos , Receptor 2 Gatillante de la Citotoxidad Natural/antagonistas & inhibidores , Antígeno Nuclear de Célula en Proliferación/química , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Citotoxicidad Inmunológica/efectos de los fármacos , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Receptor 2 Gatillante de la Citotoxidad Natural/inmunología , Antígeno Nuclear de Célula en Proliferación/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nat Med ; 25(5): 751-758, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31011205

RESUMEN

Precision medicine focuses on DNA abnormalities, but not all tumors have tractable genomic alterations. The WINTHER trial ( NCT01856296 ) navigated patients to therapy on the basis of fresh biopsy-derived DNA sequencing (arm A; 236 gene panel) or RNA expression (arm B; comparing tumor to normal). The clinical management committee (investigators from five countries) recommended therapies, prioritizing genomic matches; physicians determined the therapy given. Matching scores were calculated post-hoc for each patient, according to drugs received: for DNA, the number of alterations matched divided by the total alteration number; for RNA, expression-matched drug ranks. Overall, 303 patients consented; 107 (35%; 69 in arm A and 38 in arm B) were evaluable for therapy. The median number of previous therapies was three. The most common diagnoses were colon, head and neck, and lung cancers. Among the 107 patients, the rate of stable disease ≥6 months and partial or complete response was 26.2% (arm A: 23.2%; arm B: 31.6% (P = 0.37)). The patient proportion with WINTHER versus previous therapy progression-free survival ratio of >1.5 was 22.4%, which did not meet the pre-specified primary end point. Fewer previous therapies, better performance status and higher matching score correlated with longer progression-free survival (all P < 0.05, multivariate). Our study shows that genomic and transcriptomic profiling are both useful for improving therapy recommendations and patient outcome, and expands personalized cancer treatment.


Asunto(s)
Neoplasias/genética , Neoplasias/terapia , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Terapia Combinada , Femenino , Perfilación de la Expresión Génica , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Medicina de Precisión , Supervivencia sin Progresión , Análisis de Secuencia de ADN
14.
Front Oncol ; 9: 17, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723707

RESUMEN

Despite of remarkable progress made in the head and neck cancer (HNC) therapy, the survival rate of this metastatic disease remain low. Tailoring the appropriate therapy to patients is a major challenge and highlights the unmet need to have a good preclinical model that will predict clinical response. Hence, we developed an accurate and time efficient drug screening method of tumor ex vivo analysis (TEVA) system, which can predict patient-specific drug responses. In this study, we generated six patient derived xenografts (PDXs) which were utilized for TEVA. Briefly, PDXs were cut into 2 × 2 × 2 mm3 explants and treated with clinically relevant drugs for 24 h. Tumor cell proliferation and death were evaluated by immunohistochemistry and TEVA score was calculated. Ex vivo and in vivo drug efficacy studies were performed on four PDXs and three drugs side-by-side to explore correlation between TEVA and PDX treatment in vivo. Efficacy of drug combinations was also ventured. Optimization of the culture timings dictated 24 h to be the time frame to detect drug responses and drug penetrates 2 × 2 × 2 mm3 explants as signaling pathways were significantly altered. Tumor responses to drugs in TEVA, significantly corresponds with the drug efficacy in mice. Overall, this low cost, robust, relatively simple and efficient 3D tissue-based method, employing material from one PDX, can bypass the necessity of drug validation in immune-incompetent PDX-bearing mice. Our data provides a potential rationale for utilizing TEVA to predict tumor response to targeted and chemo therapies when multiple targets are proposed.

15.
Breast ; 38: 30-38, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29202330

RESUMEN

BACKGROUND: Recent studies have aimed to identify gene mutation profiles to explain the cause of TNBC therapy limitations. METHODS: The purpose of our study was to use Next Generation Sequencing (NGS) of 46 genes with a well-defined role in cancer in a cohort of TNBC patients in order to identify novel markers that could lead to the development of strategic, adjuvant, gene-targeted therapies. RESULTS: A total of 118 gene mutations in 35 genes, 75 mutations in BRCA1 and 92 mutations in BRCA2 were identified. The clinical assessment of the identified mutations showed 27 to be possibly damaging and 59 to be damaging. TP53, KDR, PIK3CA (rs3729687), ATM, AKT1 and KIT were among the most frequently mutated genes in our TNBC cohort. The SNP AKT1 (rs3730358) was suggested to modify the risk of breast cancer. SNP PIK3CA (rs3729687) is a damaging mutation that we found to be correlated with the prognosis of TNBC. The survival curve analysis showed that the presence of AKT1, TP53, KDR, KIT, BRCA1 and BRCA2 mutations is correlated with a poor prognosis. CONCLUSION: We show a strong association between TNBC and mutations in BRCA1/2 genes and the poor outcome of these patients. Moreover, we identified several other unknown mutations putatively associated with the poor prognosis of TNBC tumors. We also discovered novel mutations never before associated with breast cancer that could putatively account for the poor prognosis of the TNBC tumors.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama Triple Negativas/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Femenino , Genes BRCA1 , Genes BRCA2 , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Polimorfismo Genético , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-kit/genética , Estudios Retrospectivos , Proteína p53 Supresora de Tumor/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
16.
Cancer Discov ; 7(6): 586-595, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28365644

RESUMEN

High-throughput genomic analyses may improve outcomes in patients with advanced cancers. MOSCATO 01 is a prospective clinical trial evaluating the clinical benefit of this approach. Nucleic acids were extracted from fresh-frozen tumor biopsies and analyzed by array comparative genomic hybridization, next-generation sequencing, and RNA sequencing. The primary objective was to evaluate clinical benefit as measured by the percentage of patients presenting progression-free survival (PFS) on matched therapy (PFS2) 1.3-fold longer than the PFS on prior therapy (PFS1). A total of 1,035 adult patients were included, and a biopsy was performed in 948. An actionable molecular alteration was identified in 411 of 843 patients with a molecular portrait. A total of 199 patients were treated with a targeted therapy matched to a genomic alteration. The PFS2/PFS1 ratio was >1.3 in 33% of the patients (63/193). Objective responses were observed in 22 of 194 patients (11%; 95% CI, 7%-17%), and median overall survival was 11.9 months (95% CI, 9.5-14.3 months).Significance: This study suggests that high-throughput genomics could improve outcomes in a subset of patients with hard-to-treat cancers. Although these results are encouraging, only 7% of the successfully screened patients benefited from this approach. Randomized trials are needed to validate this hypothesis and to quantify the magnitude of benefit. Expanding drug access could increase the percentage of patients who benefit. Cancer Discov; 7(6); 586-95. ©2017 AACR.See related commentary by Schram and Hyman, p. 552This article is highlighted in the In This Issue feature, p. 539.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/genética , Adulto , Anciano , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Femenino , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Resultado del Tratamiento , Adulto Joven
17.
Expert Rev Mol Med ; 18: e18, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27817751

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous group of tumours characterised by lack of expression of oestrogen-, progesterone- and human epidermal growth factor receptors. TNBC, which represents approximately 15% of all mammary tumours, has a poor prognosis because of an aggressive behaviour and the lack of specific treatment. Accordingly, TNBC has become a major focus of research into breast cancer and is now classified into several molecular subtypes, each with a different prognosis. Pathological angiogenesis occurs at a late stage in the proliferation of TNBC and is associated with invasion and metastasis; there is an association with metabolic syndrome. Semaphorins are a versatile family of proteins with multiple roles in angiogenesis, tumour growth and metastasis and may represent a clinically useful focus for therapeutic targeting in this type of breast cancer. Another important field of investigation into the control of pathological angiogenesis is related to the expression of noncoding RNA (ncRNA) - these molecules can be considered as a therapeutic target or as a biomarker. Several molecular agents for intervening in the activity of different signalling pathways are being explored in TNBC, but none has so far proved effective in clinical trials and the disease continues to pose a defining challenge for clinical management as well as innovative cancer research.


Asunto(s)
Neovascularización Patológica , Neoplasias de la Mama Triple Negativas/etiología , Neoplasias de la Mama Triple Negativas/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Estudios Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proteoma , Proteómica/métodos , ARN no Traducido/genética , Semaforinas/genética , Semaforinas/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/terapia
18.
Cancer Biomark ; 17(3): 323-333, 2016 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-27802208

RESUMEN

BACKGROUND: Resectable non-small cell lung cancer (NSCLC) treatment options most often consist of surgical resection along with adjuvant chemotherapy (ACT). The benefit of ACT however is modest and is accompanied by important side effects. OBJECTIVE: One central quest in the field is therefore the identification of a predictive marker of the response to ACT. METHODS: We applied an unbiased approach based on high content analysis of expression data generated from a discovery patient cohort. RESULTS: We identified MMS19, a component of the cytoplasmic Iron-Sulfur Assembly (CIA) machinery important for the Nucleotide Excision Repair (NER) pathway as a pivotal gene for cisplatin toxicity. We then confirmed the association between MMS19 expression and the response to Cisplatin treatment in a panel of NSCLC cell lines. Finally we validated these pre-clinical data in a subgroup of JBR.10 trial patients through a hypothesis-driven analysis, and showed that MMS19 levels associated with ACT benefit. CONCLUSIONS: We therefore propose the expression level of MMS19 as a candidate predictive marker of ACT benefit in resected NSCLC patients.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Factores de Transcripción/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Quimioterapia Adyuvante , Expresión Génica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Resultado del Tratamiento
19.
Free Radic Biol Med ; 99: 244-258, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27519269

RESUMEN

Facioscapulohumeral dystrophy (FSHD) is one of the three most common muscular dystrophies in the Western world, however, its etiology remains only partially understood. Here, we provide evidence of constitutive DNA damage in in vitro cultured myoblasts isolated from FSHD patients and demonstrate oxidative DNA damage implication in the differentiation of these cells into phenotypically-aberrant myotubes. Double homeobox 4 (DUX4), the major actor in FSHD pathology induced DNA damage accumulation when overexpressed in normal human myoblasts, and RNAi-mediated DUX4 inhibition reduced the level of DNA damage in FSHD myoblasts. Addition of tempol, a powerful antioxidant, to the culture medium of proliferating DUX4-transfected myoblasts and FSHD myoblasts reduced the level of DNA damage, suggesting that DNA alterations are mainly due to oxidative stress. Antioxidant treatment during the myogenic differentiation of FSHD myoblasts significantly reduced morphological defects in myotube formation. We propose that the induction of DNA damage is a novel function of the DUX4 protein affecting myogenic differentiation of FSHD myoblasts.


Asunto(s)
Proteínas de Homeodominio/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapulohumeral/genética , Mioblastos/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Estudios de Casos y Controles , Diferenciación Celular , Óxidos N-Cíclicos/farmacología , Daño del ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/metabolismo , Humanos , Anotación de Secuencia Molecular , Familia de Multigenes , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/patología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Marcadores de Spin , Transfección
20.
JAMA Oncol ; 2(11): 1452-1459, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27273579

RESUMEN

IMPORTANCE: The impact of a biomarker-based (personalized) cancer treatment strategy in the setting of phase 1 clinical trials was analyzed. OBJECTIVE: To compare patient outcomes in phase 1 studies that used a biomarker selection strategy with those that did not. DATA SOURCES: PubMed search of phase 1 cancer drug trials (January 1, 2011, through December 31, 2013). STUDY SELECTION: Studies included trials that evaluated single agents, and reported efficacy end points (at least response rate [RR]). DATA EXTRACTION AND SYNTHESIS: Data were extracted independently by 2 investigators. MAIN OUTCOMES AND MEASURES: Response rate and progression-free survival (PFS) were compared for arms that used a personalized strategy (biomarker selection) vs those that did not. Overall survival was not analyzed owing to insufficient data. RESULTS: A total of 346 studies published in the designated 3-year time period were included in the analysis. Multivariable analysis (meta-regression and weighted multiple regression models) demonstrated that the personalized approach independently correlated with a significantly higher median RR (30.6% [95% CI, 25.0%-36.9%] vs 4.9% [95% CI, 4.2%-5.7%]; P < .001) and a longer median PFS (5.7 [95% CI, 2.6-13.8] vs 2.95 [95% CI, 2.3-3.7] months; P < .001). Targeted therapy arms that used a biomarker-based selection strategy (n = 57 trials) were associated with statistically improved RR compared with targeted therapy arms (n = 177 arms) that did not (31.1% [95% CI, 25.4%-37.4%] vs 5.1% [95% CI, 4.3%-6.0%]; P < .001). Nonpersonalized targeted arms had outcomes comparable with those that tested a cytotoxic agent (median RR, 5.1% [95% CI, 4.3%-6.0%] vs 4.7% [95% CI, 3.6%-6.2%]; P = .63; respectively; median PFS, 3.3 [95% CI, 2.6-4.0] months vs 2.5 [95% CI, 2.0-3.7] months; P = .22). Personalized arms using a "genomic (DNA) biomarker" had higher median RR than those using a "protein biomarker" (42.0% [95% CI, 33.7%-50.9%] vs 22.4% [95% CI, 15.6%-30.9%]; P = .001). The median treatment-related mortality was not statistically different for arms that used a personalized strategy vs not (1.89% [95% CI, 1.36%-2.61%] vs 2.27% [95% CI, 1.97%-2.62%]; P = .31). CONCLUSIONS AND RELEVANCE: In this meta-analysis, most phase 1 trials of targeted agents did not use a biomarker-based selection strategy. However, use of a biomarker-based approach was associated with significantly improved outcomes (RR and PFS). Response rates were significantly higher with genomic vs protein biomarkers. Studies that used targeted agents without a biomarker had negligible response rates.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Ensayos Clínicos Fase I como Asunto , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos , Humanos , Neoplasias/metabolismo , Neoplasias/mortalidad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...