Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(16): 6860-6864, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38584467

RESUMEN

We report a first example of field-induced (HDC = 2500 Oe) slow magnetization relaxation in the homotrinuclear linear heterospin manganese coordination compound with S = 7/2 ground state, based on the bidentate 3,5-di-tert-butyl-1,2-benzoquinone-1-monooxime (HL) ligand with composition {[MnL3]Mn[MnL3]}.

2.
Food Chem ; 445: 138747, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387317

RESUMEN

A new 3D metal-organic framework {[Cd16(tr2btd)10(dcdps)16(H2O)3(EtOH)]∙15DMF}n (MOF 1, tr2btd = 4,7-di(1,2,4-triazol-1-yl)benzo-2,1,3-thiadiazole, H2dcdps = 4,4'-sulfonyldibenzoic acid) was obtained and its luminescent properties were studied. MOF 1 exhibited bright blue-green luminescence with a high quantum yield of 74 % and luminescence quenching response to a toxic natural polyphenol gossypol and luminescence enhancement response to some trivalent metal cations (Fe3+, Cr3+, Al3+ and Ga3+). The limit of gossypol detection was 0.20 µM and the determination was not interfered by the components of the cottonseed oil. The limit of detection of gallium(III) was 1.1 µM. It was demonstrated that MOF 1 may be used for distinguishing between the genuine sunflower oil and oil adulterated by crude cottonseed oil through qualitative luminescent and quantitative visual gossypol determination.


Asunto(s)
Galio , Gosipol , Estructuras Metalorgánicas , Petróleo , Aceite de Semillas de Algodón , Luminiscencia , Culinaria
3.
Materials (Basel) ; 17(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38255606

RESUMEN

Mono-, di-, and trifluorophenyl substituted in different positions of amine fragments bis [2-[[(E)-((fluorophenyl)iminomethyl]-N-(p-tolylsulfonyl)anilino]zinc(II) complexes were synthesized. Their crystal structure, photo- and electroluminescent properties, and protistocidal, fungistatic, and antibacterial activities were studied. It has been shown that the introduction of fluorine atoms and an increase in their number in the ligand structure of the resulting metal complexes promote the luminescence quantum yields and values of performance and brightness in EL cells compared to their previously studied chlorine-substituted analogs.

4.
Dalton Trans ; 53(7): 3330-3347, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38261350

RESUMEN

By reacting a series of 2,6-diacetylpyridine bis-hydrazones containing pyrimidine (H2L1), benzimidazole (H2L2) and phthalazine (H2L3) heterocyclic fragments with copper(II) chloride and bromide, a variety of pentacoordinated complexes of the composition [Cu(H2L1)X]X, [Cu(HL2)X] and [Cu(HL3)X], where X = Cl-, Br-, are formed. The properties and structure of the compounds were studied by means of NMR, IR, UV-vis, ESR, and X-ray absorption spectroscopy, cyclic voltammetry and X-Ray single crystal diffraction methods. It was shown that complexes of the cationic type [Cu(H2L1)X]X have an asymmetric structure with a distorted square-pyramidal geometry of the coordination unit. The coordination polyhedron of metal chelates [Cu(HL2)X] and [Cu(HL3)X] is an almost ideal square pyramid. Investigations of the cytotoxic activity of the obtained compounds in vitro on human hepatocellular carcinoma (HepG2) and non-tumor human lung fibroblast (MRC-5) cell lines demonstrated that complexes show higher activity compared with the well-known anticancer agent cisplatin. In addition, metal chelates [Cu(H2L1)Cl]Cl, [Cu(HL2)Cl], [Cu(HL2)Br] and [Cu(HL3)Cl] were less toxic to non-tumor cells MRC-5. A study of the binding of complexes to bovine serum albumin (BSA) protein using fluorescence spectroscopy showed that copper complexes are strongly bound to BSA. To study the mechanism of interaction of the complexes with the DNA of cancer cells, molecular dynamics simulation of the compound [Cu(HL3)Cl] was carried out. It was shown that the complex enters into π-stacking interactions predominantly with adenine and thymine bases.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , Cobre/farmacología , Cobre/química , Hidrazonas/farmacología , Antineoplásicos/química , Metales , ADN/química , Complejos de Coordinación/química , Cristalografía por Rayos X
5.
Pharmaceutics ; 15(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37513989

RESUMEN

11H-Indeno[1,2-b]quinoxalin-11-one oxime (IQ-1) and tryptanthrin-6-oxime are potent c-Jun N-terminal kinase 3 (JNK-3) inhibitors demonstrating neuroprotective, anti-inflammatory and anti-arthritic activity. However, the stereochemical configuration of the oxime carbon-nitrogen double bond (E- or Z-) in these compounds was so far unknown. In this contribution, we report the results of the determination of the double bond configuration in the solid state by single crystal X-ray diffraction and in solution by 1D and 2D NMR techniques and DFT calculations. It was found that both in the solid state and in solution, IQ-1 adopts the E-configuration stabilized by intermolecular hydrogen bonds, in contrast to previously assumed Z-configuration that could be stabilized only by an intramolecular hydrogen bond.

6.
Dalton Trans ; 52(9): 2641-2662, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744818

RESUMEN

In this work, a new binuclear nitrosyl complex with 3.4-dichlorothiophenolyl ligands [Fe2(SC6H3Cl2)2(NO)4] has been synthesized. Nitrosyl iron complexes (NICs) are systems for the storage and delivery of NO in the body. There is a dynamic equilibrium between dinitrosyl iron units bound to low molecular weight ligands and high molecular weight (protein) ligands in vivo. From this point of view, the transformation of the studied complex in DMSO and buffer, as well as in biological systems, has been analyzed. In DMSO, it decomposes into mononuclear NICs, which quickly decay in buffer solutions with NO release. The high molecular weight product is formed as a result of the binding of the complex to bovine serum albumin (the Stern-Volmer constant is 2.1 × 105 M-1). In this case, the complex becomes a prolonged NO-donor. Such a long-term effect has been observed for the first time. Similarly, in a system with oxyhemoglobin, NO generation is slower; the UV-vis spectra show a gradual formation of methemoglobin. On the other hand, reduced glutathione has little effect on the NO-donor properties of the complex despite the fact that ligand substitution is observed in the system and a binuclear product is formed. Mucin binds the complex, and the decomposition mechanism is different from that for buffer solutions. Thus, these proteins and glutathione are able to participate in the transformation of the complex and modulate its properties as a potential drug.


Asunto(s)
Dimetilsulfóxido , Hierro , Hierro/química , Ligandos , Óxidos de Nitrógeno/química , Óxido Nítrico/química , Donantes de Óxido Nítrico , Glutatión/química
7.
Photosynth Res ; 156(1): 3-17, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36063303

RESUMEN

Our analysis of the X-ray crystal structure of canthaxanthin (CAN) showed that its ketolated ß-ionone rings can adopt two energetically equal, but structurally distinct puckers. Quantum chemistry calculations revealed that the potential energy surface of the ß-ionone ring rotation over the plane of the conjugated π-system in carotenoids depends on the pucker state of the ß-ring. Considering different pucker states and ß-ionone ring rotation, we found six separate local minima on the potential energy surface defining the geometry of the keto-ß-ionone ring-two cis and one trans orientation for each of two pucker states. We observed a small difference in energy and no difference in relative orientation for the cis-minima, but a pronounced difference for the position of trans-minimum in alternative pucker configurations. An energetic advantage of ß-ionone ring rotation from a specific pucker type can reach up to 8 kJ/mol ([Formula: see text]). In addition, we performed the simulation of linear absorption of CAN in hexane and in a unit cell of the CAN crystal. The electronic energies of [Formula: see text] transition were estimated both for the CAN monomer and in the CAN crystal. The difference between them reached [Formula: see text], which roughly corresponds to the energy gap between A and B pucker states predicted by theoretical estimations. Finally, we have discussed the importance of such effects for biological systems whose local environment determines conformational mobility, and optical/functional characteristics of carotenoid.


Asunto(s)
Carotenoides , Norisoprenoides , Carotenoides/química , Norisoprenoides/química , Conformación Molecular , Cantaxantina
8.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499583

RESUMEN

New azomethine compounds of 2-(N-tosylamino)benzaldehyde or 5-chloro-2-(N-tosylamino)benzaldehyde and the corresponding chlorine-substituted anilines, zinc(II) complexes based on them have been synthesized. The structures of azomethines and their complexes were determined by elemental analysis, IR, 1H NMR, X-ray spectroscopy, and X-ray diffraction. It is found that all ZnL2 complexes have a tetrahedral structure according to XAFS and X-ray diffraction data. The photoluminescent properties of azomethines and zinc complexes in methylene chloride solution and in solid form have been studied. It is shown that the photoluminescence quantum yields of solid samples of the complexes are an order of magnitude higher compared to the solutions and range from 11.34% to 48.3%. The thermal properties of Zn(II) complexes were determined by thermal gravimetric analysis (TGA) and differential scanning calorimetry. The TGA curves of all the compounds suggest their high thermal stability up to temperatures higher than 290 °C. The electrochemical properties of all complexes were investigated by the cyclic voltammetry method. The multilayered devices ITO/PEDOT:PSS/NPD/Zn complex/ TPBI/LiF/Al with wide electroluminescence (EL) color range spanning the range from bluish-green (494 nm) to green (533 nm) and the high values of brightness, current and power efficiency were fabricated. The biological activity of azomethines and zinc complexes has been studied. In the case of complexes, the protistocidal activity of the zinc complex with azomethine of 5-chloro-2-(N-tosylamino)benzaldehyde with 4-chloroaniline was two times higher than the activity of the reference drug toltrazuril.


Asunto(s)
Tiosemicarbazonas , Zinc , Zinc/química , Cloro , Tiosemicarbazonas/química , Luminiscencia , Cloruros , Halógenos
9.
Inorg Chem ; 61(18): 7060-7068, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35471861

RESUMEN

The crystal and local structures of Czochralski-grown calcium orthovanadate (Ca3(VO4)2) single crystals doped with over-stoichiometric 0.05 wt % Mn2O3 (CVO:0.05Mn) and annealed under different conditions are studied by single-crystal conventional and synchrotron X-ray diffraction, X-ray absorption spectroscopy, and electron paramagnetic resonance for the first time. Bottom (annealing in air) and top (annealing in air and in vacuum) parts of the CVO:0.05Mn crystal differ in the manganese content (higher in the bottom part), formal charge (Mn4+ and Mn(3+δ)+, respectively), and color (orange bottom part; light orange and yellow top parts annealed in air and vacuum, respectively). Manganese ions are located in one (Ca3, distorted two-capped trigonal prism) of five crystallographic Ca sites and have octahedral coordination, which is consistent with crystal-chemical properties of transition-metal ions. The presence of vacancies in one of three V sites is revealed. Formal charge 5+ for vanadium ions is confirmed by X-ray photoelectron spectroscopy. Different colors of CVO:Mn crystals and different formal charges of manganese are explained depending on the growth and post-growth treatment conditions.

10.
Dalton Trans ; 51(14): 5673-5686, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322815

RESUMEN

Laser Ca3(VO4)2 single crystals (СVO; space group R3c, Z = 21) with crystallochemical formula Ca118Ca218Ca318Ca46(Ca5 + Са5А)3(V118V218V36)O168 grown by the Czochralski method were doped with Мn2O3 (CVO:Мn2O3) and Сo3O4 (CVO:Co3O4) by high-temperature diffusion annealing. Statistical and local structures were comprehensively studied by single-crystal and powder synchrotron X-ray diffraction and conventional single-crystal X-ray diffraction as well as by X-ray absorption spectroscopy for the first time. The presence of Mn(2+δ)+ ions with a mixed formal charge and Co2+ ions in the Ca2 (monocapped trigonal prism), Ca3 (two-capped trigonal prism), and Ca4 (octahedron) sites was revealed by diffraction methods. The tetrahedral coordination and the coordination intermediate between tetrahedral and octahedral were established for Mn(2+δ)+ and Co2+ ions, respectively. A fundamentally different structural behavior of dopant ions (concentration, formal charge, and coordination environment) in the CVO crystals doped with manganese in the form of Mn2O3 during the crystal growth or by high-temperature diffusion annealing was observed. The relationship between characteristic bands in the absorption, fluorescence, and excitation spectra of CVO:Мn2O3 and CVO:Co3O4 samples and transition metals with specific formal charges is discussed.

11.
Appl Microbiol Biotechnol ; 106(4): 1493-1509, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35129654

RESUMEN

In this study, we compared the properties and structures of three fungal GH12 enzymes: the strict endoglucanase Bgh12A and the xyloglucanase Xgh12B from Aspergillus cervinus, and the endoglucanase Egh12 from Thielavia terrestris combining activity on linear ß-glucan and branched xyloglucan. Egh12 from T. terrestris was produced in Pichia pastoris, purified, and characterized as a thermostable enzyme with maximal activity at 70 ºC and a half-life time of 138 min at 65 °C. We for the first time demonstrated that the GH12 endoglucanases Egh12 and Bgh12A, but not the strict xyloglucanase Xgh12B, hydrolyzed (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides and had transglycosylase activity on (1,3)-ß-D-glucooligosaccharides. Phylogenetic analysis indicated that Egh12 from T. terrestris and Bgh12A from A. cervinus are more related than Bgh12A and Xgh12B isolated from one strain. The X-ray structure of Bgh12A was determined with 2.17 Å resolution and compared with 3D-homology models of Egh12 and Xgh12B. The enzymes have a ß-jelly roll structure with a catalytic cleft running across the protein. Comparative analysis and a docking study demonstrated the importance of endoglucanase-specific loop 1 partly covering the catalytic cleft for correct placement of the linear substrates. Variability in substrate specificity between the GH12 endoglucanases is determined by non-conservative residues in structural loops framing the catalytic cleft. A residue responsible for the thermostability of Egh12 was predicted. The key structural elements and residues described in this study may serve as potential targets for modification aimed at the improvement of enzymatic properties. KEY POINTS: • Thermostable endoglucanase Egh12 from T. terrestris was produced in P. pastoris, purified, and characterized • The X-ray structure of GH12 endoglucanase Bgh12A from A. cervinus was resolved • GH12 endoglucanases, but not GH12 xyloglucanases, hydrolyze (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides.


Asunto(s)
Celulasa , Sordariales , Aspergillus , Celulasa/metabolismo , Filogenia , Sordariales/metabolismo , Especificidad por Sustrato
12.
Inorg Chem ; 60(23): 17462-17479, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757728

RESUMEN

A potassium salt of the N2S2O2-coordination Fe(III) anion K[Fe(5Cl-thsa)2] (1) (5Cl-thsa - 5-chlorosalicylaldehyde thiosemicarbazone) is synthesized and characterized structurally and magnetically over a wide temperature range. Two polymorphs of salt 1 characterized by the common 2D polymer nature and assigned to the same orthorhombic Pbcn space group have been identified. The molecular structure of the minor polymorph of 1 was solved and refined at 100, 250, and 300 K is shown to correspond to the LS configuration. The dominant polymorph of 1 features K+ cations disordered over a few crystallographic sites, while the minor polymorph includes fully ordered K+ cations. The major polymorph exhibits a complete three-step cooperative spin-crossover transition both in the heating and cooling modes: The first step occurs in a temperature range from 2 to 50 K; the second abrupt hysteretic step occurs from 200 to 250 K with T1/2 = 230 K and a 6 K hysteresis loop. The third gradual step occurs from 250 to 440 K. According to 57Fe Mössbauer, XRPD, and EXAFS data, the spin-crossover transition for the dominant polymorph is quite peculiar. Indeed, the increase in the HS concentration by 57% at the second step does not result in the expected significant increase in the iron(III)-ligand bond lengths. In addition, the final step of the spin conversion (ΔγHS = 26%) is associated with a structural phase transition with a symmetry lowering from the orthorhombic (Pbcn) to the monoclinic (P21/n) space group. This nontrivial phenomenon was investigated in detail by applying magnetization measurements, electron spin resonance, 57Fe Mössbauer spectroscopy, and DFT calculations. These results provide a new platform for understanding the multistep spin-crossover character in the Fe(III) thsa-complexes and related compounds.

13.
Dalton Trans ; 50(34): 11899-11908, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34373872

RESUMEN

Two series of highly luminescent yttrium(iii), europium(iii) and terbium(iii) metal-organic frameworks containing diimine aromatic ligands and the dicarboxylate linker trans-1,4-cyclohexanedicarboxylate (chdc2-) which can be described by the general formulas [M2(bpy)2(chdc)3], where M = Y3+ (1), Eu3+ (2), and Tb3+ (3) and bpy = 2,2'-bipyridyl, and [M2(phen)2(chdc)3], where M = Y3+ (4), Eu3+ (5), and Tb3+ (6) and phen = 1,10-phenanthroline, were synthesized and characterized. All compounds are based on the same dinuclear {M2(L)2(OOCR)6} building blocks and possess a similar topology of the 3D framework with narrow pores. The chelate aromatic ligands act as efficient light-harvesting antennas for subsequent energy transfer to the emitting metal center (M = Eu3+, Tb3+) or intraligand photoemission (M = Y3+). As a result, the reported compounds display intense emission in the red (Eu3+), green (Tb3+) or blue (Y3+) regions representing three basic colors (RGB) of visible light. The measured quantum yields (QYs) of the solid-state luminescence for individual compounds were found to be 63% (1), 46% (2), 59% (3), 2.3% (4), 55% (5) and 49% (6). The drastic reduction of the luminescence efficiency for 4 is explained by the strong disorder of phen ligands. The high thermal stability (up to 300 °C) and exceptional moisture resistance of the bpy-based frameworks 1-3 were confirmed by TG and PXRD measurements. Various bimetal or trimetal compositions were also prepared for the bpy-series. The luminescence properties of these mixed-metal compounds depend on both the chemical composition and excitation wavelength (λex). Remarkably, pure white emission with color temperature = 6126 K was achieved for [Y1.68Eu0.08Tb0.24(bpy)2(chdc)3] at λex = 360 nm with QY = 20%. The reported results suggest that the obtained coordination framework series is a convenient platform for the design of highly efficient light emitting materials with tunable properties.

14.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121243

RESUMEN

Green fluorescent genetically encoded calcium indicators (GECIs) are the most popular tool for visualization of calcium dynamics in vivo. However, most of them are based on the EGFP protein and have similar molecular brightnesses. The NTnC indicator, which is composed of the mNeonGreen fluorescent protein with the insertion of troponin C, has higher brightness as compared to EGFP-based GECIs, but shows a limited inverted response with an ΔF/F of 1. By insertion of a calmodulin/M13-peptide pair into the mNeonGreen protein, we developed a green GECI called NCaMP7. In vitro, NCaMP7 showed positive response with an ΔF/F of 27 and high affinity (Kd of 125 nM) to calcium ions. NCaMP7 demonstrated a 1.7-fold higher brightness and similar calcium-association/dissociation dynamics compared to the standard GCaMP6s GECI in vitro. According to fluorescence recovery after photobleaching (FRAP) experiments, the NCaMP7 design partially prevented interactions of NCaMP7 with the intracellular environment. The NCaMP7 crystal structure was obtained at 1.75 Å resolution to uncover the molecular basis of its calcium ions sensitivity. The NCaMP7 indicator retained a high and fast response when expressed in cultured HeLa and neuronal cells. Finally, we successfully utilized the NCaMP7 indicator for in vivo visualization of grating-evoked and place-dependent neuronal activity in the visual cortex and the hippocampus of mice using a two-photon microscope and an NVista miniscope, respectively.


Asunto(s)
Calcio/metabolismo , Técnicas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Animales , Conducta Animal , Células Cultivadas , Cristalografía por Rayos X , Fluorometría , Células HeLa , Hipocampo/metabolismo , Humanos , Indicadores y Reactivos , Cinética , Ratones Endogámicos C57BL , Modelos Moleculares , Neuronas/metabolismo , Fotones , Corteza Visual/fisiología , Vigilia
15.
J Am Chem Soc ; 141(43): 17260-17269, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31584810

RESUMEN

A series of new zinc(II)-thiophene-2,5-dicarboxylate (tdc) MOFs based on novel dodecanuclear wheel-shaped building blocks has been synthesized in almost quantative yields. Single-crystal X-ray diffraction analyses reveal 3D porous frameworks with a complex composition [Zn12(tdc)6(glycolate)6(dabco)3] where glycolate is a deprotonated polyatomic alcohol (ethylene glycol, EgO2, 1; 1,2-propanediol, PrO2, 2; 1,2-butanediol, BuO2, 3; 1,2-pentanediol, PeO2, 4; glycerol, GlO2, 5) and dabco is 1,4-diazo[2.2.2.]bicyclooctane. All compounds 1-5 are isostructural except for pendant groups of the diols decorating the surface of channels. The adsorption of small gases (N2, CO2, CH4, C2H2, C2H4, C2H6) and larger hydrocarbons (benzene, cyclohexane) both in liquid and vapor phases was thoroughly investigated for all compounds. The zero-coverage adsorption enthalpies, Henry constants, and selectivity factors by various models are calculated and discussed. The versatile adsorption functionality of the title series results from the variable nature of the diol and could be tailored for a specific adsorbate system. For example, 1 shows excellent selectivity of benzene over cyclohexane (20:1 for vapors, 92:1 for liquid phase), while 4 demonstrates unprecedented adsorption preference of cyclohexane over benzene (selectivity up to 5:1). The compound 5 demonstrates great adsorption selectivity for CO2/N2 (up to 75.1), CO2/CH4 (up to 7.7), C2H2/CH4 (up to 14.2), and C2H4/CH4 (up to 9.4). Also, due to polar nature of the pores, 5 features size-selective sorption of alkaline metal cations in order Li+ > Na+ > K+ > Cs+ as well as a notable luminescent response for cesium(I) ions and urea.

16.
Dalton Trans ; 48(25): 9328-9336, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31166344

RESUMEN

The iron(iii) complex [Fe(Hsemsal)(semsal)]·3H2O (1) (H2semsal - salicylaldehyde semicarbazone) has been synthesized and characterized by powder and single crystal X-ray diffraction, and magnetic susceptibility measurements. Crystal structure analysis showed that the complex forms neat stacks stabilized by hydrogen-bonding through water molecules and π-π interactions between phenolate rings of ligands. The complex does not exhibit spin-crossover phenomena and remains in the high-spin state down to 2 K. DFT calculations were performed for a series of neutral Fe(iii) complexes, and the influence of the N2S2O2, N2Se2O2 and N2O4 coordination environment on the spin transition in these complexes was traced. The effect of substituents in the benzene ring of salicylaldehyde on the stabilization of the HS or LS states in complexes of this type was analyzed.

17.
Dalton Trans ; 47(10): 3283-3297, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29363694

RESUMEN

In contrast to aromatic carboxylates, the coordination polymers based on their perfluorinated analogues are not numerous. Here we present a series of six Zn(ii) coordination polymers of different dimensionalities (1D, 2D, and 3D) and porosities based on octafluorobiphenyl-4,4'-dicarboxylate (oFBPDC2-) and N-containing co-ligands (ur, dabco, and bpy). These complexes are characterized by single-crystal X-ray diffraction, PXRD, FT-IR, elemental analysis, and TGA. The metal-organic frameworks [Zn2(CH3CONH2)2(oFBPDC)2] (1) and [Zn2(oFBPDC)2(dabco)] (4) are shown to be porous with BET surface areas of 470 m2 g-1 and 441 m2 g-1, respectively. In addition, compound 4 shows selectivity factors of 11.3, 4.9 and more than 6 for the binary gas mixtures CO2/N2, CO2/CH4 and benzene/cyclohexane, respectively. The measurements for pressed powders and water droplet give water contact angles of 136° for 4 and 133° for (H2bpy)[Zn2(bpy)(oFBPDC)3] (5). Low water uptake indicates that both 4 and 5 belong to highly hydrophobic solids.

18.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 4): 569-572, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28435723

RESUMEN

At a temperature of 100 K, CH5N2+·I- (I), crystallizes in the monoclinic space group P21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C-N bond lengths are 1.301 (7) and 1.309 (8) Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10) Å. The cation and anion of I form a tight ionic pair by a strong N-H⋯I hydrogen bond. In the crystal of I, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1] via strong N-H⋯I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour of I was studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction). Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid-solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition of I. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol-1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence of I as the monoclinic (100-346 K), ortho-rhom-bic (346-387 K) and cubic (387-525 K) polymorphic modifications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...