Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(18): 7998-8008, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38629179

RESUMEN

Understanding microplastic exposure and effects is critical to understanding risk. Here, we used large, in-lake closed-bottom mesocosms to investigate exposure and effects on pelagic freshwater ecosystems. This article provides details about the experimental design and results on the transport of microplastics and exposure to pelagic organisms. Our experiment included three polymers of microplastics (PE, PS, and PET) ranging in density and size. Nominal concentrations ranged from 0 to 29,240 microplastics per liter on a log scale. Mesocosms enclosed natural microbial, phytoplankton, and zooplankton communities and yellow perch (Perca flavescens). We quantified and characterized microplastics in the water column and in components of the food web (biofilm on the walls, zooplankton, and fish). The microplastics in the water stratified vertically according to size and density. After 10 weeks, about 1% of the microplastics added were in the water column, 0.4% attached to biofilm on the walls, 0.01% within zooplankton, and 0.0001% in fish. Visual observations suggest the remaining >98% were in a surface slick and on the bottom. Our study suggests organisms that feed at the surface and in the benthos are likely most at risk, and demonstrates the value of measuring exposure and transport to inform experimental designs and achieve target concentrations in different matrices within toxicity tests.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Zooplancton , Animales , Lagos , Ecosistema , Cadena Alimentaria , Monitoreo del Ambiente , Fitoplancton , Percas/metabolismo
2.
Water Environ Res ; 96(3): e11008, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443318

RESUMEN

In aquatic ecosystems, plastic litter is a substrate for biofilms. Biofilms on plastic and natural surfaces share similar composition and activity, with some differences due to factors such as porosity. In freshwaters, most studies have examined biofilms on benthic substrates, while little research has compared the activity and composition of biofilms on buoyant plastic and natural surfaces. Additionally, the influence of substrate size and successional stage on biofilm composition has not been commonly assessed. We incubated three plastics of distinct textures that are buoyant in rivers, low-density polyethylene (rigid; 1.7 mm thick), low-density polyethylene film (flexible; 0.0254 mm thick), and foamed polystyrene (brittle; 6.5 mm thick), as well as wood substrates (untreated oak veneer; 0.6 mm thick) in the Chicago River. Each material was incubated at three sizes (1, 7.5, and 15 cm2 ). Substrates were incubated at 2-10 cm depths and removed weekly for 6 weeks. On each substrate we measured chlorophyll concentration, biofilm biomass, respiration, and flux of nitrogen gas. We sequenced 16S and 23S rRNA genes at Weeks 1, 3, and 6 to capture biofilm community composition across successional stages. Chlorophyll, biomass, and N2 flux were similar across substrates, but respiration was greater on wood than plastics. Bacterial and algal richness and diversity were highest on foam and wood compared to polyethylene substrates. Bacterial biofilm community composition was distinct between wood and plastic substrates, while the algal community was distinct on wood and foam, which were different from each other and polyethylene substrates. These results indicate that polymer properties influence biofilm alpha and beta diversity, which may affect transport and distribution of plastic pollution and associated microbes, as well as biogeochemical processes in urban rivers. This study provides valuable insights into the effects of substrate on biofilm characteristics, and the ecological impacts of plastic pollution on urban rivers. PRACTITIONER POINTS: Plastic physical and chemical properties act as forces of selection for biofilm. Biofilm activity was similar among three different types of plastic. Community composition between plastic and wood was different.


Asunto(s)
Polietileno , Ríos , Ecosistema , Biopelículas , Clorofila
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...