Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 176: 116887, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852511

RESUMEN

BACKGROUND: The metastasis of tumors into bone tissue typically leads to intractable pain that is both very disabling and particularly difficult to manage. We investigated here whether riluzole could have beneficial effects for the treatment of prostate cancer-induced bone pain and how it could influence the development of bone metastasis. METHODS: We used a bone pain model induced by intratibial injection of human PC3 prostate cancer cells into male SCID mice treated or not with riluzole administered in drinking water. We also used riluzole in vitro to assess its possible effect on PC3 cell viability and functionality, using patch-clamp. RESULTS: Riluzole had a significant preventive effect on both evoked and spontaneous pain involving the TREK-1 potassium channel. Riluzole did not interfere with PC3-induced bone loss or bone remodeling in vivo. It also significantly decreased PC3 cell viability in vitro. The antiproliferative effect of riluzole is correlated with a TREK-1-dependent membrane hyperpolarization in these cells. CONCLUSION: The present data suggest that riluzole could be very useful to manage evoked and spontaneous hypersensitivity in cancer-induced bone pain and has no significant adverse effect on cancer progression.


Asunto(s)
Analgésicos , Neoplasias Óseas , Dolor en Cáncer , Proliferación Celular , Ratones SCID , Canales de Potasio de Dominio Poro en Tándem , Riluzol , Riluzol/farmacología , Animales , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Masculino , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/secundario , Neoplasias Óseas/patología , Neoplasias Óseas/complicaciones , Humanos , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/metabolismo , Analgésicos/farmacología , Proliferación Celular/efectos de los fármacos , Células PC-3 , Ratones , Supervivencia Celular/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral
2.
Nat Commun ; 15(1): 54, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167790

RESUMEN

L-type voltage-gated calcium channels are involved in multiple physiological functions. Currently available antagonists do not discriminate between L-type channel isoforms. Importantly, no selective blocker is available to dissect the role of L-type isoforms Cav1.2 and Cav1.3 that are concomitantly co-expressed in the heart, neuroendocrine and neuronal cells. Here we show that calciseptine, a snake toxin purified from mamba venom, selectively blocks Cav1.2 -mediated L-type calcium currents (ICaL) at concentrations leaving Cav1.3-mediated ICaL unaffected in both native cardiac myocytes and HEK-293T cells expressing recombinant Cav1.2 and Cav1.3 channels. Functionally, calciseptine potently inhibits cardiac contraction without altering the pacemaker activity in sino-atrial node cells, underscoring differential roles of Cav1.2- and Cav1.3 in cardiac contractility and automaticity. In summary, calciseptine is a selective L-type Cav1.2 Ca2+ channel blocker and should be a valuable tool to dissect the role of these L-channel isoforms.


Asunto(s)
Canales de Calcio Tipo L , Dendroaspis , Animales , Canales de Calcio Tipo L/fisiología , Dendroaspis/metabolismo , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas , Calcio/metabolismo
4.
Toxins (Basel) ; 11(6)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234412

RESUMEN

Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (Nav) channel Nav1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human Nav1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural Nav1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate Nav1.7 involvement in cellular excitability and pain.


Asunto(s)
Analgésicos/aislamiento & purificación , Péptidos/aislamiento & purificación , Venenos de Araña/química , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Secuencia de Aminoácidos , Analgésicos/química , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Células CHO , Cricetulus , Femenino , Formaldehído , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.7/fisiología , Oocitos , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Péptidos/química , Péptidos/farmacología , Péptidos/uso terapéutico , Pliegue de Proteína , Arañas , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Xenopus laevis
5.
Neuropharmacology ; 140: 43-61, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30056126

RESUMEN

Neurotoxicity remains the most common adverse effect of oxaliplatin, limiting its clinical use. In the present study, we developed a mouse model of chronic oxaliplatin-induced neuropathy, which mimics both sensory and motor deficits observed in patients, in a clinically relevant time course. Repeated oxaliplatin administration in mice induced both cephalic and extracephalic long lasting mechanical and cold hypersensitivity after the first injection as well as delayed sensorimotor deficits and a depression-like phenotype. Using this model, we report that riluzole prevents both sensory and motor deficits induced by oxaliplatin as well as the depression-like phenotype induced by cumulative chemotherapeutic drug doses. All the beneficial effects are due to riluzole action on the TREK-1 potassium channel, which plays a central role in its therapeutic action. Riluzole has no negative effect on oxaliplatin antiproliferative capacity in human colorectal cancer cells and on its anticancer effect in a mouse model of colorectal cancer. Moreover, riluzole decreases human colorectal cancer cell line viability in vitro and inhibits polyp development in vivo. The present data in mice may support the need to clinically test riluzole in oxaliplatin-treated cancer patients and state for the important role of the TREK-1 channel in pain perception.


Asunto(s)
Depresión/prevención & control , Síndromes de Neurotoxicidad/prevención & control , Oxaliplatino/efectos adversos , Oxaliplatino/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Riluzol/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Depresión/inducido químicamente , Humanos , Masculino , Ratones , Ratones Noqueados , Neoplasias/tratamiento farmacológico , Dimensión del Dolor/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores
6.
Sci Rep ; 7(1): 14701, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089640

RESUMEN

MLC901, a traditional Chinese medicine containing a cocktail of active molecules, both reduces cerebral infarction and improves recovery in patients with ischemic stroke. The aim of this study was to evaluate the acute and long-term benefits of MLC901 in ischemic and reperfused mouse hearts. Ex vivo, under physiological conditions, MLC901 did not show any modification in heart rate and contraction amplitude. However, upon an ischemic insult, MLC901 administration during reperfusion, improved coronary flow in perfused hearts. In vivo, MLC901 (4 µg/kg) intravenous injection 5 minutes before reperfusion provided a decrease in both infarct size (49.8%) and apoptosis (49.9%) after 1 hour of reperfusion. Akt and ERK1/2 survival pathways were significantly activated in the myocardium of those mice. In the 4-month clinical follow-up upon an additional continuous per os administration, MLC901 treatment decreased cardiac injury as revealed by a 45%-decrease in cTnI plasmatic concentrations and an improved cardiac performance assessed by echocardiography. A histological analysis revealed a 64%-decreased residual scar fibrosis and a 44%-increased vascular density in the infarct region. This paper demonstrates that MLC901 treatment was able to provide acute and long-term cardioprotective effects in a murine model of myocardial ischemia-reperfusion injury in vivo.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Corazón/efectos de los fármacos , Medicina Tradicional China , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Daño por Reperfusión/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibrosis/tratamiento farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Oncogénica v-akt/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos , Transducción de Señal , Troponina I/sangre
7.
Cerebrovasc Dis ; 42(1-2): 139-54, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27099921

RESUMEN

BACKGROUND: There is increasing evidence that angiogenesis, through new blood vessel formation, results in improved collateral circulation and may impact the long-term recovery of patients. In this study, we first investigated the preventive action of a 5-week pretreatment of MLC901, an herbal extract preparation derived from Chinese medicine, against the deleterious effects of ischemic stroke and its effects on angiogenesis in a model of focal ischemia in mice. METHODS: The stroke model was induced by 60 min of middle cerebral artery occlusion followed by reperfusion. MLC901 was administered in the drinking water of animals (6 g/l) for 5 weeks before ischemia and then during reperfusion. RESULTS: MLC901 treatment increased the survival rate, reduced the cerebral infarct area and attenuated the blood brain barrier leakage as well as the neurologic dysfunction following ischemia and reperfusion. We provide evidence that MLC901 enhances endothelial cell proliferation and angiogenesis by increasing the number of neocortical vessels in the infarcted area. MLC901 regulates the expression of hypoxic inducible factor 1α and its downstream targets such as vascular endothelial growth factor and angiopoietins 1 and 2. This work also shows that erythropoietin is an important player in the enhancement of angiogenesis by MLC901. CONCLUSIONS: These results demonstrate therapeutic properties of MLC901, in addition to those previously described, in stimulating revascularization, neuroprotection and repair of the neurovascular unit after ischemic stroke.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Neovascularización Fisiológica/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Angiopoyetina 1/metabolismo , Angiopoyetina 2/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Pain ; 155(12): 2534-2544, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25239074

RESUMEN

Two-pore domain background K(+) channels (K2p or KCNK) produce hyperpolarizing currents that control cell membrane polarity and neuronal excitability throughout the nervous system. The TREK2 channel as well as the related TREK1 and TRAAK channels are mechanical-, thermal- and lipid-gated channels that share many regulatory properties. TREK2 is one of the major background channels expressed in rodent nociceptive neurons of the dorsal root ganglia that innervate the skin and deep body tissues, but its role in somatosensory perception and nociception has remained poorly understood. We now report that TREK2 is a regulatory channel that controls the perception of non aversive warm, between 40°C and 46°C, and moderate ambient cool temperatures, between 20°C and 25°C, in mice. TREK2 controls the firing activity of peripheral sensory C-fibers in response to changes in temperature. The role of TREK2 in thermosensation is different from that of TREK1 and TRAAK channels; rather, TREK2, TREK1, and TRAAK channels appear to have complementary roles in thermosensation. TREK2 is also involved in mechanical pain perception and in osmotic pain after sensitization by prostaglandin E2. TREK2 is involved in the cold allodynia that characterizes the neuropathy commonly associated with treatments with the anticancer drug oxaliplatin. These results suggest that positive modulation of the TREK2 channel may have beneficial analgesic effects in these neuropathic conditions.


Asunto(s)
Regulación de la Expresión Génica/genética , Percepción del Dolor/fisiología , Umbral del Dolor/psicología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Sensación Térmica/genética , Animales , Antineoplásicos/toxicidad , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Nerviosas Amielínicas/fisiología , Compuestos Organoplatinos/toxicidad , Oxaliplatino , Dimensión del Dolor , Percepción del Dolor/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Estimulación Física , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Sensación Térmica/efectos de los fármacos
11.
Nat Commun ; 4: 2941, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24346231

RESUMEN

Morphine is the gold-standard pain reliever for severe acute or chronic pain but it also produces adverse side effects that can alter the quality of life of patients and, in some rare cases, jeopardize the vital prognosis. Morphine elicits both therapeutic and adverse effects primarily through the same µ opioid receptor subtype, which makes it difficult to separate the two types of effects. Here we show that beneficial and deleterious effects of morphine are mediated through different signalling pathways downstream from µ opioid receptor. We demonstrate that the TREK-1 K(+) channel is a crucial contributor of morphine-induced analgesia in mice, while it is not involved in morphine-induced constipation, respiratory depression and dependence-three main adverse effects of opioid analgesic therapy. These observations suggest that direct activation of the TREK-1 K(+) channel, acting downstream from the µ opioid receptor, might have strong analgesic effects without opioid-like adverse effects.


Asunto(s)
Analgesia/métodos , Morfina/efectos adversos , Morfina/uso terapéutico , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/uso terapéutico , Animales , Células COS , Chlorocebus aethiops , Estreñimiento , Cruzamientos Genéticos , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Naloxona/química , Dolor/tratamiento farmacológico , Manejo del Dolor , Receptores Opioides mu/metabolismo , Insuficiencia Respiratoria , Transducción de Señal , Factores de Tiempo
13.
Nature ; 490(7421): 552-5, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23034652

RESUMEN

Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.


Asunto(s)
Bloqueadores del Canal Iónico Sensible al Ácido/farmacología , Canales Iónicos Sensibles al Ácido/metabolismo , Analgésicos/farmacología , Venenos Elapídicos/farmacología , Dolor/tratamiento farmacológico , Péptidos/farmacología , Péptidos/uso terapéutico , Bloqueadores del Canal Iónico Sensible al Ácido/química , Bloqueadores del Canal Iónico Sensible al Ácido/uso terapéutico , Canales Iónicos Sensibles al Ácido/clasificación , Canales Iónicos Sensibles al Ácido/genética , Analgésicos/efectos adversos , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Tolerancia a Medicamentos , Venenos Elapídicos/administración & dosificación , Venenos Elapídicos/química , Venenos Elapídicos/uso terapéutico , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Morfina/efectos adversos , Morfina/farmacología , Naloxona/farmacología , Nociceptores/química , Nociceptores/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Dolor/metabolismo , Péptidos/administración & dosificación , Péptidos/química , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Ratas , Insuficiencia Respiratoria/inducido químicamente , Xenopus laevis
14.
Nat Med ; 18(8): 1205-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22842475

RESUMEN

Pressure-induced vasodilation (PIV) delays the decrease in cutaneous blood flow produced by local application of low pressure to the skin, a physiologically appropriate adjustment of local vasomotor function. Individuals without a normal PIV response have a high risk of ulceration. Here we demonstrate that acid-sensing ion channel 3 (Asic3) is an essential neuronal sensor for the vasodilation response to direct pressure in both humans and rodents and for protecting against pressure ulcers in mice.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Hiperemia/fisiopatología , Mecanorreceptores/fisiología , Úlcera por Presión/fisiopatología , Piel/irrigación sanguínea , Vasodilatación/fisiología , Canales Iónicos Sensibles al Ácido/deficiencia , Canales Iónicos Sensibles al Ácido/efectos de los fármacos , Canales Iónicos Sensibles al Ácido/genética , Adulto , Amilorida/farmacología , Animales , Calcitonina/antagonistas & inhibidores , Venenos de Cnidarios/farmacología , Diclofenaco/farmacología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Femenino , Dedos/irrigación sanguínea , Humanos , Isquemia/etiología , Isquemia/fisiopatología , Masculino , Mecanorreceptores/efectos de los fármacos , Ratones , Ratones Noqueados , Presión/efectos adversos , Úlcera por Presión/etiología , Úlcera por Presión/prevención & control , Precursores de Proteínas/antagonistas & inhibidores , Distribución Aleatoria , Ratas , Ratas Wistar , Método Simple Ciego , Adulto Joven
15.
J Neurosci ; 31(16): 6059-66, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21508231

RESUMEN

Iatrogenic pain consecutive to a large number of surgical procedures has become a growing health concern. The etiology and pathophysiology of postoperative pain are still poorly understood, but hydrogen ions appear to be important in this process. We have investigated the role of peripheral acid-sensing ion channels (ASICs), which form depolarizing channels activated by extracellular protons, in a rat model of postoperative pain (i.e., hindpaw skin/muscle incision). We report high levels of ASIC-type currents (∼ 77%) in sensory neurons innervating the hindpaw muscles, with a prevalence of ASIC3-like currents. The ASIC3 protein is largely expressed in lumbar DRG neurons innervating the plantar muscle, and its mRNA and protein levels are increased by plantar incision 24 h after surgery. Pharmacological inhibition of ASIC3 channels with the specific toxin APETx2 or in vivo knockdown of ASIC3 subunit by small interfering RNA led to a significant reduction of postoperative spontaneous, thermal, and postural pain behaviors (spontaneous flinching, heat hyperalgesia, and weight bearing). ASIC3 appears to have an important role in deep tissue but also affects prolonged pain evoked by skin incision alone. The specific homomeric ASIC1a blocker PcTx1 has no effect on spontaneous flinching, when applied peripherally. Together, these data demonstrate a significant role for peripheral ASIC3-containing channels in postoperative pain.


Asunto(s)
Hiperalgesia/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dolor Postoperatorio/metabolismo , Células Receptoras Sensoriales/fisiología , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Animales , Electrofisiología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Miembro Posterior/inervación , Miembro Posterior/metabolismo , Hiperalgesia/fisiopatología , Masculino , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Dimensión del Dolor , Dolor Postoperatorio/fisiopatología , ARN Interferente Pequeño , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
EMBO Mol Med ; 3(5): 266-78, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21438154

RESUMEN

Cold hypersensitivity is the hallmark of oxaliplatin-induced neuropathy, which develops in nearly all patients under this chemotherapy. To date, pain management strategies have failed to alleviate these symptoms, hence development of adapted analgesics is needed. Here, we report that oxaliplatin exaggerates cold perception in mice as well as in patients. These symptoms are mediated by primary afferent sensory neurons expressing the thermoreceptor TRPM8. Mechanistically, oxaliplatin promotes over-excitability by drastically lowering the expression of distinct potassium channels (TREK1, TRAAK) and by increasing the expression of pro-excitatory channels such as the hyperpolarization-activated channels (HCNs). These findings are corroborated by the analysis of TREK1-TRAAK null mice and use of the specific HCN inhibitor ivabradine, which abolishes the oxaliplatin-induced cold hypersensibility. These results suggest that oxaliplatin exacerbates cold perception by modulating the transcription of distinct ionic conductances that together shape sensory neuron responses to cold. The translational and clinical implication of these findings would be that ivabradine may represent a tailored treatment for oxaliplatin-induced neuropathy.


Asunto(s)
Antineoplásicos/efectos adversos , Frío , Hiperalgesia/inducido químicamente , Nociceptores/efectos de los fármacos , Compuestos Organoplatinos/efectos adversos , Canales Catiónicos TRPM/metabolismo , Animales , Humanos , Ratones , Nociceptores/metabolismo , Oxaliplatino , Canales de Potasio/metabolismo
17.
Eur J Pain ; 15(4): 335-43, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20888277

RESUMEN

Irritable bowel syndrome (IBS) is a common functional gastro-intestinal disorder characterized by intractable chronic abdominal pain. In this study, we examined the possible spinal mechanisms underlying colonic hypersensitivity (CHS) using a non-inflammatory rat model of IBS induced by rectal enemas of butyrate, a short-chain fatty acid. We hypothesized that spinal plasticity could be responsible for CHS and that ASIC channels, which are known to support pain-elicited currents in the spinal cord, could contribute to central sensitization in our model of IBS. First, in order to determine if visceral pain relies on changes in spinal activity, we analyzed Fos expression in the spinal cord of rats treated with butyrate following a challenge with repetitive noxious colorectal distension. We found that Fos immunoreactivity was increased in thoracic T10-11-12, lumbar L1-2-6 and sacral S1 spinal segments. In control rats treated with saline, noxious repetitive colorectal distensions evoked Fos expression only in L1-2-6 and S1 spinal segments. Secondly, intrathecal injection of PcTx1, a specific ASIC1A antagonist, in the lumbar spinal cord completely prevented the development of CHS induced by butyrate. ASIC1 and 2 mRNAs, especially ASIC1A, were upregulated in the lumbar spinal cord. ASIC1A could thus contribute to spinal sensitization in our model of IBS, as it is supported by spinal colocalization of ASIC1A and Fos proteins. The whole data pinpoint a potential critical role of thoracic spinal cord in non-inflammatory pain states such as IBS and suggest that ASIC channels are part of the molecular effectors of central sensitization leading to visceral pain.


Asunto(s)
Síndrome del Colon Irritable/fisiopatología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Canales de Sodio/fisiología , Médula Espinal/fisiopatología , Canales Iónicos Sensibles al Ácido , Anestesia por Inhalación , Anestésicos por Inhalación , Animales , Butiratos , Colon/fisiopatología , Cartilla de ADN , Enema , Expresión Génica/efectos de los fármacos , Genes fos/genética , Inmunohistoquímica , Síndrome del Colon Irritable/inducido químicamente , Isoflurano , Masculino , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/genética
18.
J Biol Chem ; 284(46): 31851-9, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19778905

RESUMEN

ASIC3 is an acid-sensing ion channel expressed in sensory neurons, where it participates in acidic and inflammatory pain. In addition to the "classical" transient current, ASIC3 generates a sustained current essential for pain perception. Using chimeras between the ASIC3 and ASIC1a channels we show that the first transmembrane domain (TM1), combined with the N-terminal domain, is the key structural element generating the low pH (<6.5)-evoked sustained current. The TM1 domain also modulates the pH-dependent activation of the fast transient current thus contributing to a constitutive window current, another type of sustained current present near physiological pH. The C-terminal and the TM2 domains negatively regulate both types of sustained current, and the extracellular loop affects its kinetics. These data provide new information to aid understanding the mechanisms of the multifaceted pH gating of ASIC3. Together with the peak current, both components of the sustained current (window and sustained at pH <6.5) allow ASIC3 to adapt its behavior to a wide range of extracellular pH variations by generating transient and/or sustained responses that contribute to nociceptor excitability.


Asunto(s)
Ácidos/metabolismo , Activación del Canal Iónico , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Animales , Electrofisiología , Concentración de Iones de Hidrógeno , Potenciales de la Membrana , Proteínas del Tejido Nervioso/genética , Oocitos/metabolismo , Plásmidos , Ratas , Canales de Sodio/genética , Xenopus laevis
19.
Proc Natl Acad Sci U S A ; 106(34): 14628-33, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19667202

RESUMEN

Mechanosensitive K(+) channels TREK1 and TREK2 form a subclass of two P-domain K(+) channels. They are potently activated by polyunsaturated fatty acids and are involved in neuroprotection, anesthesia, and pain perception. Here, we show that acidification of the extracellular medium strongly inhibits TREK1 with an apparent pK near to 7.4 corresponding to the physiological pH. The all-or-none effect of pH variation is steep and is observed within one pH unit. TREK2 is not inhibited but activated by acidification within the same range of pH, despite its close homology with TREK1. A single conserved residue, H126 in TREK1 and H151 in TREK2, is involved in proton sensing. This histidine is located in the M1P1 extracellular loop preceding the first P domain. The differential effect of acidification, that is, activation for TREK2 and inhibition for TREK1, involves other residues located in the P2M4 loop, linking the second P domain and the fourth membrane-spanning segment. Structural modeling of TREK1 and TREK2 and site-directed mutagenesis strongly suggest that attraction or repulsion between the protonated side chain of histidine and closely located negatively or positively charged residues in P2M4 control outer gating of these channels. The differential sensitivity of TREK1 and TREK2 to external pH variations discriminates between these two K(+) channels that otherwise share the same regulations by physical and chemical stimuli, and by hormones and neurotransmitters.


Asunto(s)
Histidina/fisiología , Mutación , Canales de Potasio de Dominio Poro en Tándem/fisiología , Animales , Estimulación Eléctrica , Espacio Extracelular/química , Femenino , Histidina/química , Histidina/genética , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Potenciales de la Membrana , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Oocitos/fisiología , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Estructura Terciaria de Proteína , Protones , Xenopus
20.
EMBO J ; 28(9): 1308-18, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19279663

RESUMEN

The sensation of cold or heat depends on the activation of specific nerve endings in the skin. This involves heat- and cold-sensitive excitatory transient receptor potential (TRP) channels. However, we show here that the mechano-gated and highly temperature-sensitive potassium channels of the TREK/TRAAK family, which normally work as silencers of the excitatory channels, are also implicated. They are important for the definition of temperature thresholds and temperature ranges in which excitation of nociceptor takes place and for the intensity of excitation when it occurs. They are expressed with thermo-TRP channels in sensory neurons. TRAAK and TREK-1 channels control pain produced by mechanical stimulation and both heat and cold pain perception in mice. Expression of TRAAK alone or in association with TREK-1 controls heat responses of both capsaicin-sensitive and capsaicin-insensitive sensory neurons. Together TREK-1 and TRAAK channels are important regulators of nociceptor activation by cold, particularly in the nociceptor population that is not activated by menthol.


Asunto(s)
Frío , Calor , Canales de Potasio de Dominio Poro en Tándem/fisiología , Canales de Potasio/fisiología , Sensación Térmica/fisiología , Animales , Células Cultivadas , Electrofisiología , Ganglios Espinales/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Dolor , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Sensación Térmica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...