RESUMEN
Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown. Here we show that Chromobox Protein Homolog 7 (CBX7), component of the Polycomb Repressive Complex 1, contributes to pathophysiological KLF2 signaling during zebrafish cardiovascular development. CBX7/cbx7a mRNA is strongly upregulated in lesions of CCM patients, and in human, mouse, and zebrafish CCM-deficient endothelial cells. The silencing or pharmacological inhibition of CBX7/Cbx7a suppresses pathological CCM phenotypes in ccm2 zebrafish, CCM2-deficient HUVECs, and in a pre-clinical murine CCM3 disease model. Whole-transcriptome datasets from zebrafish cardiovascular tissues and human endothelial cells reveal a role of CBX7/Cbx7a in the activation of KLF2 target genes including TEK, ANGPT1, WNT9, and endoMT-associated genes. Our findings uncover an intricate interplay in the regulation of Klf2-dependent biomechanical signaling by CBX7 in CCM. This work also provides insights for therapeutic strategies in the pathogenesis of CCM.
RESUMEN
Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level, we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor, known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level, which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly, the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability, while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary, we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.
Asunto(s)
Células Endoteliales , Técnicas de Sustitución del Gen , Células Madre Pluripotentes Inducidas , Receptor TIE-2 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Células Endoteliales/metabolismo , Mutación/genética , Sistemas CRISPR-Cas/genética , Malformaciones Vasculares/genética , Malformaciones Vasculares/patología , Malformaciones Vasculares/metabolismoRESUMEN
Apolipoprotein L1 (APOL1) high-risk genotypes are associated with increased risk of chronic kidney disease (CKD) in people of West African ancestry. Given the importance of endothelial cells (ECs) in CKD, we hypothesized that APOL1 high-risk genotypes may contribute to disease via EC-intrinsic activation and dysfunction. Single cell RNA sequencing (scRNA-seq) analysis of the Kidney Precision Medicine Project dataset revealed APOL1 expression in ECs from various renal vascular compartments. Utilizing two public transcriptomic datasets of kidney tissue from African Americans with CKD and a dataset of APOL1-expressing transgenic mice, we identified an EC activation signature; specifically, increased intercellular adhesion molecule 1 (ICAM-1) expression and enrichment in leukocyte migration pathways. In vitro, APOL1 expression in ECs derived from genetically modified human induced pluripotent stem cells and glomerular ECs triggered changes in ICAM-1 and platelet endothelial cell adhesion molecule 1 (PECAM-1) leading to an increase in monocyte attachment. Overall, our data suggest the involvement of APOL1 as an inducer of EC activation in multiple renal vascular beds with potential effects beyond the glomerular vasculature.
RESUMEN
Prokaryotic restriction enzymes, recombinases and Cas proteins are powerful DNA engineering and genome editing tools. However, in many primary cell types, the efficiency of genome editing remains low, impeding the development of gene- and cell-based therapeutic applications. A safe strategy for robust and efficient enrichment of precisely genetically engineered cells is urgently required. Here, we screen for mutations in the receptor for Diphtheria Toxin (DT) which protect human cells from DT. Selection for cells with an edited DT receptor variant enriches for simultaneously introduced, precisely targeted gene modifications at a second independent locus, such as nucleotide substitutions and DNA insertions. Our method enables the rapid generation of a homogenous cell population with bi-allelic integration of a DNA cassette at the selection locus, without clonal isolation. Toxin-based selection works in both cancer-transformed and non-transformed cells, including human induced pluripotent stem cells and human primary T-lymphocytes, as well as it is applicable also in vivo, in mice with humanized liver. This work represents a flexible, precise, and efficient selection strategy to engineer cells using CRISPR-Cas and base editing systems.