Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(26): 18671-18684, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38863813

RESUMEN

Silver nanoparticles (AgNPs) were loaded on deprotonated cellulose nanocrystals (CNCd) and incorporated into polyvinyl alcohol (PVA) to develop novel active food packaging films. The AgNPs were fabricated using the liquid phase chemical reduction method using the sodium borohydride reductant of AgNO3. The analysis using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), and Ultraviolet-visible spectroscopy (UV-Vis) showed that the CNCd surface had a homogeneous distribution of AgNPs with a diameter of about 100 nm. Additionally, CNCd/Ag was successfully incorporated into the PVA film. The developed PVA/CNCd/Ag film showed significantly improved mechanical properties, thermal stability, and UV barrier properties compared to a neat PVA film. The PVA/CNCd/Ag composite film could significantly preserve bananas for 14 days, preventing deterioration and allowing extended storage periods. This composite film generally shows promise in food packaging and prolongs food's shelf life.

2.
Polymers (Basel) ; 15(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631430

RESUMEN

Novel effluent treatment solutions for dangerous organic pollutants are crucial worldwide. In recent years, chemical reduction using noble metal-based nanocatalysts and NaBH4, a reducing agent, has become common practice for eliminating organic contaminants from aquatic environments. We suggest a straightforward approach to synthesizing magnetic cellulose nanocrystals (CNCs) modified with magnetite (Fe3O4) and silver nanoparticles (Ag NPs) as a catalyst for organic contamination removal. Significantly, the CNC surface was decorated with Ag NPs without using any reducing agents or stabilizers. PXRD, FE-SEM, TEM, EDX, VSM, BET, and zeta potential tests characterized the Ag/Fe3O4/CNC nanocomposite. The nanocomposite's catalytic activity was tested by eliminating 4-nitrophenol (4-NP) and the organic dyes methylene blue (MB) and methyl orange (MO) in an aqueous solution at 25 °C. The Ag/Fe3O4/CNC nanocomposite reduced 4-NP and decolored these hazardous organic dyes in a short time (2 to 5 min) using a tiny amount of catalyst (2.5 mg for 4-NP and 15 mg for MO and MB). The magnetic catalyst was removed and reused three times without losing catalytic activity. This work shows that the Ag/Fe3O4/CNC nanocomposite can chemically reduce harmful pollutants in effluent for environmental applications.

3.
Biomacromolecules ; 22(12): 5327-5338, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34807571

RESUMEN

Rice husk is one of the most abundant biomass resources in the world, yet it is not effectively used. This study focuses on the sustainably rice-husk-extracted lignin, nano-lignin (n-Lignin), lignin-capped silver nanoparticles (LCSN), n-Lignin-capped silver nanoparticles (n-LCSN), and lignin-capped silica-silver nanoparticles (LCSSN), and using them for antibacterial activities. The final n-Lignin-based products had a sphere-like structure, of which the size varied between 50 and 80 nm. We found that while n-Lignin and lignin were less effective against Escherichia coli than against Staphylococcus aureus, n-Lignin/lignin-based hybrid materials, i.e., n-LCSN, LCSN, and LCSSN, were better against E. coli than against S. aureus. Interestingly, the antimicrobial behaviors of n-LCSNs could be further improved by decreasing the size of n-Lignin. Considering the facile, sustainable, and eco-friendly method that we have developed here, it is promising to use n-Lignin/lignin-based materials as highly efficient antimicrobials without environmental concerns.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli , Lignina/química , Lignina/farmacología , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Dióxido de Silicio , Plata/química , Plata/farmacología , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...