Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108590

RESUMEN

The "leaky gut" syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the "leaky gut" syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed a complex in vitro inflammation-triggered triple-culture model using 21-day-differentiated human intestinal Caco-2 epithelial cells and HT29-MTX-E12 mucus-producing goblet cells (90:10 ratio) in close contact with differentiated human macrophage-like THP-1 cells or primary monocyte-derived macrophages from human peripheral blood. Upon an inflammatory stimulus, the characteristics of a "leaky gut" became evident: a significant loss of intestinal cell integrity in terms of decreased transepithelial/transendothelial electrical resistance (TEER), as well as a loss of tight junction proteins. The cell permeability for FITC-dextran 4 kDa was then increased, and key pro-inflammatory cytokines, including TNF-alpha and IL-6, were substantially released. Whereas in the M1 macrophage-like THP-1 co-culture model, we could not detect the release of IL-23, which plays a crucial regulatory role in IBD, this cytokine was clearly detected when using primary human M1 macrophages instead. In conclusion, we provide an advanced human in vitro model that could be useful for screening and evaluating therapeutic drugs for IBD treatment, including potential IL-23 inhibitors.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Macrófagos , Humanos , Células CACO-2 , Células THP-1 , Macrófagos/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Interleucina-23/metabolismo
2.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34681279

RESUMEN

To date, there have been rapidly spreading new SARS-CoV-2 "variants of concern". They all contain multiple mutations in the ACE2 receptor recognition site of the spike protein, compared to the original Wuhan sequence, which is of great concern, because of their potential for immune escape. Here we report on the efficacy of common dandelion (Taraxacum officinale) to block protein-protein interaction of SARS-COV-2 spike to the human ACE2 receptor. This could be shown for the wild type and mutant forms (D614G, N501Y, and a mix of K417N, E484K, and N501Y) in human HEK293-hACE2 kidney and A549-hACE2-TMPRSS2 lung cells. High-molecular-weight compounds in the water-based extract account for this effect. Infection of the lung cells using SARS-CoV-2 spike D614 and spike Delta (B.1.617.2) variant pseudotyped lentivirus particles was efficiently prevented by the extract and so was virus-triggered pro-inflammatory interleukin 6 secretion. Modern herbal monographs consider the usage of this medicinal plant as safe. Thus, the in vitro results reported here should encourage further research on the clinical relevance and applicability of the extract as prevention strategy for SARS-CoV-2 infection in terms of a non-invasive, oral post-exposure prophylaxis.

3.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681798

RESUMEN

Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2'-O-acetylsalicortin (1), 3'-O-acetylsalicortin (2), 2'-O-acetylsalicin (3), 2',6'-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine.


Asunto(s)
Inflamación/tratamiento farmacológico , Salicilatos/aislamiento & purificación , Salix/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Células Cultivadas , Cromatografía Liquida , Dinoprostona/metabolismo , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Dolor/tratamiento farmacológico , Fitoterapia/métodos , Corteza de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Salicilatos/análisis , Salicilatos/farmacología , Espectrometría de Masas en Tándem
4.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201817

RESUMEN

The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed in this paper. Willow bark (Salix cortex) has been used for centuries to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the human body into salicylic acid, the precursor of the commonly used pain drug acetylsalicylic acid (ASA). Here, we report on the in vitro anti-inflammatory efficacy of two methanolic Salix extracts, standardized to phenolic compounds, in comparison to ASA in the context of a SARS-CoV-2 peptide challenge. Using SARS-CoV-2 peptide/IL-1ß- or LPS-activated human PBMCs and an inflammatory intestinal Caco-2/HT29-MTX co-culture, Salix extracts, and ASA concentration-dependently suppressed prostaglandin E2 (PGE2), a principal mediator of inflammation. The inhibition of COX-2 enzyme activity, but not protein expression was observed for ASA and one Salix extract. In activated PBMCs, the suppression of relevant cytokines (i.e., IL-6, IL-1ß, and IL-10) was seen for both Salix extracts. The anti-inflammatory capacity of Salix extracts was still retained after transepithelial passage and liver cell metabolism in an advanced co-culture model system consisting of intestinal Caco-2/HT29-MTX cells and differentiated hepatocyte-like HepaRG cells. Taken together, our in vitro data suggest that Salix extracts might present an additional anti-inflammatory treatment option in the context of SARS-CoV-2 peptides challenge; however, more confirmatory data are needed.


Asunto(s)
Antiinflamatorios/farmacología , Aspirina/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , Extractos Vegetales/farmacología , Antiinflamatorios/química , Alcoholes Bencílicos/metabolismo , COVID-19/virología , Células CACO-2 , Ciclooxigenasa 2/efectos de los fármacos , Citocinas/metabolismo , Dinoprostona/metabolismo , Glucósidos/metabolismo , Células HT29 , Humanos , Inflamación , Leucocitos Mononucleares/efectos de los fármacos , Lipopolisacáridos/inmunología , Corteza de la Planta/química , Extractos Vegetales/química , SARS-CoV-2/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...