Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 168: 187-192, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29409715

RESUMEN

HYPOTHESIS: In a saturated cement paste, there are three different types of water: the structural water chemically reacted with cement, the constrained water absorbed to the surface of the pores, and the free water in the center of the pores. Each type has different physicochemical state and unique relation to cement porosity. The different water types have different dynamics which can be detected using quasi-elastic neutron scattering (QENS). Since the porosity of a hardened cement paste is impacted strongly by the water to cement ratio (w/c), it should be possible to extract the hydration dependence of the pores by exploiting the dynamical parameters of the confined water. EXPERIMENTS: Three C-S-H samples with different water levels, 8%, 17% and 30% were measured using QENS. The measurements were carried out in the scattering vector, Q, range from 0.5 Å-1 to 1.3 Å-1, and in the temperature interval from 230 K to 280 K. The data were analyzed using a novel global model developed for cement QENS spectra. FINDINGS: The results show that while increasing the water content, the structural water index (SWI) decreases and the confining radius, a, increases. Both SWI and a have a linear relationship with the water content. The Arrhenius plot of the translational relaxation time shows that the constrained water dominates the non-structural water at water contents lower than 17%. The rotational activation energy is smaller for lower water content. The analysis demonstrated that our newly proposed global model is practical and useful for analyzing cement QENS data.


Asunto(s)
Compuestos de Calcio/química , Modelos Químicos , Difracción de Neutrones/métodos , Silicatos/química , Agua/química , Algoritmos , Elasticidad , Porosidad , Temperatura , Termodinámica
2.
J Colloid Interface Sci ; 499: 189-201, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28384537

RESUMEN

HYPOTHESIS: Bile micelles are thought to mediate intestinal absorption, in part by providing a phase into which compounds can partition. Solubilizing capacity of bile micelles is enhanced during the digestion of fat rich food. We hypothesized that the intestinal digestion of triglycerides causes an increase in volume of micelles that can be quantitatively monitored over the course of digestion using small-angle neutron scattering (SANS), and that SANS can enable evaluation of the contribution of each of the components present during digestion to the size of micelles. EXPERIMENTS: SANS was used to characterize the size and shape of micelles present prior to and during the in vitro simulated intestinal digestion of a model food-associated lipid, triolein. FINDINGS: Pre-lipolysis mixtures of a bile salt and phospholipid simulating bile concentrations in fed conditions were organized in micelles with an average volume of 40 nm3. During lipolysis, the micelle volume increased 2.5-fold over a 2-h digestion period due to growth in one direction as a result of insertion of monoglycerides and fatty acids. These efforts represent a basis for quantitative mechanistic understanding of changes in solubilizing capacity of the intestinal milieu upon ingestion of a fat-rich meal.

3.
J Colloid Interface Sci ; 469: 157-163, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26874981

RESUMEN

HYPOTHESIS: The mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior. Hence, it should be possible to extract information on pore system by exploiting the water dynamics. EXPERIMENTS: We investigated the slow dynamics of hydration water confined in calcium- and magnesium-silicate-hydrate (C-S-H and M-S-H) gels using high-resolution quasi-elastic neutron scattering (QENS) technique. C-S-H and M-S-H are the chemical binders present in calcium rich and magnesium rich cements. We measured three M-S-H samples: pure M-S-H, M-S-H with aluminum-silicate nanotubes (ASN), and M-S-H with carboxyl group functionalized ASN (ASN-COOH). A C-S-H sample with the same water content (i.e. 0.3) is also studied for comparison. FINDINGS: Structural water in the gels contributes to the elastic component of the QENS spectrum, while constrained water and free water contribute the quasi-elastic component. The quantitative analysis suggests that the three components vary for different samples and indicate the variance in the system porosity, which controls the mechanical properties of cement pastes.

5.
J Chem Phys ; 143(11): 114508, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26395720

RESUMEN

With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

6.
Artículo en Inglés | MEDLINE | ID: mdl-25375521

RESUMEN

The characteristic relaxation time τ of protein hydration water exhibits a strong hydration level h dependence. The dynamic crossover is observed when h is higher than the monolayer hydration level hc=0.2-0.25 and becomes more visible as h increases. When h is lower than hc, τ only exhibits Arrhenius behavior in the measured temperature range. The activation energy of the Arrhenius behavior is insensitive to h, indicating a local-like motion. Moreover, the h dependence of the crossover temperature shows that the protein dynamic transition is not directly or solely induced by the dynamic crossover in the hydration water.


Asunto(s)
Modelos Moleculares , Proteínas/química , Agua/química , Enlace de Hidrógeno , Difracción de Neutrones , Temperatura
7.
Phys Rev Lett ; 112(23): 237802, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24972226

RESUMEN

The boson peak in deeply cooled water confined in nanopores is studied with inelastic neutron scattering. We show that in the (P, T) plane, the locus of the emergence of the boson peak is nearly parallel to the Widom line below ∼ 1600 bar. Above 1600 bar, the situation is different and from this difference the end pressure of the Widom line is estimated. The frequency and width of the boson peak correlate with the density of water, which suggests a method to distinguish the hypothetical "low-density liquid" and "high-density liquid" phases in deeply cooled water.


Asunto(s)
Modelos Químicos , Nanoporos , Difracción de Neutrones/métodos , Agua/química , Frío , Transición de Fase
8.
Soft Matter ; 10(24): 4298-303, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24789017

RESUMEN

High resolution inelastic X-ray scattering (IXS) experiments show that the "phonon energy softening" and "phonon population enhancement" observed in a hydrated native protein when increasing the temperature from 200 K to physiological temperature are not directly related to the protein structure. Such phenomena were also observed in a denatured sample without a defined tertiary structure and with a limited residual secondary structure. However, in a dry sample, such "softening" is strongly suppressed. These facts suggest that the above-mentioned protein "softening" phenomenon is water-induced. In addition, increasing the hydration level can also induce "phonon energy softening" at room temperature, but not at 200 K. This change may be due to a qualitative difference in the dynamics of hydration water at 200 K and at room temperature.


Asunto(s)
Quimotripsinógeno/química , Muramidasa/química , Fonones , Agua/química , Conformación Proteica , Desnaturalización Proteica , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...