Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(8): e1010848, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585488

RESUMEN

N-terminal ends of polypeptides are critical for the selective co-translational recruitment of N-terminal modification enzymes. However, it is unknown whether specific N-terminal signatures differentially regulate protein fate according to their cellular functions. In this work, we developed an in-silico approach to detect functional preferences in cellular N-terminomes, and identified in S. cerevisiae more than 200 Gene Ontology terms with specific N-terminal signatures. In particular, we discovered that Mitochondrial Targeting Sequences (MTS) show a strong and specific over-representation at position 2 of hydrophobic residues known to define potential substrates of the N-terminal acetyltransferase NatC. We validated mitochondrial precursors as co-translational targets of NatC by selective purification of translating ribosomes, and found that their N-terminal signature is conserved in Saccharomycotina yeasts. Finally, systematic mutagenesis of the position 2 in a prototypal yeast mitochondrial protein confirmed its critical role in mitochondrial protein import. Our work highlights the hydrophobicity of MTS N-terminal residues and their targeting by NatC as important features for the definition of the mitochondrial proteome, providing a molecular explanation for mitochondrial defects observed in yeast or human NatC-depleted cells. Functional mapping of N-terminal residues thus has the potential to support the discovery of novel mechanisms of protein regulation or targeting.


Asunto(s)
Proteoma , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Proteoma/metabolismo , Transporte de Proteínas , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriales/metabolismo
2.
Cell Rep ; 32(8): 108076, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32846133

RESUMEN

Local translation is a conserved mechanism conferring cells the ability to quickly respond to local stimuli. In the brain, it has been recently reported in astrocytes, whose fine processes contact blood vessels and synapses. Yet the specificity and regulation of astrocyte local translation remain unknown. We study hippocampal perisynaptic astrocytic processes (PAPs) and show that they contain the machinery for translation. Using a refined immunoprecipitation technique, we characterize the entire pool of ribosome-bound mRNAs in PAPs and compare it with the one expressed in the whole astrocyte. We find that a specific pool of mRNAs is highly polarized at the synaptic interface. These transcripts encode an unexpected molecular repertoire, composed of proteins involved in iron homeostasis, translation, cell cycle, and cytoskeleton. Remarkably, we observe alterations in global RNA distribution and ribosome-bound status of some PAP-enriched transcripts after fear conditioning, indicating the role of astrocytic local translation in memory and learning.


Asunto(s)
Astrocitos/metabolismo , Miedo/psicología , Plasticidad Neuronal/fisiología , Animales , Humanos , Ratones
3.
Front Microbiol ; 9: 2689, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505294

RESUMEN

In this work, we used comparative transcriptomics to identify regulatory outliers (ROs) in the human pathogen Candida glabrata. ROs are genes that have very different expression patterns compared to their orthologs in other species. From comparative transcriptome analyses of the response of eight yeast species to toxic doses of selenite, a pleiotropic stress inducer, we identified 38 ROs in C. glabrata. Using transcriptome analyses of C. glabrata response to five different stresses, we pointed out five ROs which were more particularly responsive to iron starvation, a process which is very important for C. glabrata virulence. Global chromatin Immunoprecipitation and gene profiling analyses showed that four of these genes are actually new targets of the iron starvation responsive Aft2 transcription factor in C. glabrata. Two of them (HBS1 and DOM34b) are required for C. glabrata optimal growth in iron limited conditions. In S. cerevisiae, the orthologs of these two genes are involved in ribosome rescue by the NO GO decay (NGD) pathway. Hence, our results suggest a specific contribution of NGD co-factors to the C. glabrata adaptation to iron starvation.

4.
Sci Rep ; 8(1): 12272, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30116021

RESUMEN

Brain mural cells form a heterogeneous family which significantly contributes to the maintenance of the blood-brain barrier and regulation of the cerebral blood flow. Current procedures to isolate them cannot specifically separate their distinct subtypes, in particular vascular smooth muscle cells (VSMCs) and mid-capillary pericytes (mcPCs), which differ among others by their expression of smooth muscle actin (SMA). We herein describe an innovative method allowing SMA+ VSMCs and SMA- mcPCs to be freshly isolated from the rat cerebral cortex. Using differential RNA-Seq analysis, we then reveal the specific gene expression profile of each subtype. Our results refine the current description of the role of VSMCs in parenchymal cortical arterioles at the molecular level and provide a unique platform to identify the molecular mechanisms underlying the specific functions of mcPCs in the brain vasculature.


Asunto(s)
Encéfalo/irrigación sanguínea , Capilares/citología , Perfilación de la Expresión Génica , Músculo Liso Vascular/citología , Pericitos/metabolismo , Animales , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
5.
PLoS Genet ; 14(7): e1007498, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995890

RESUMEN

In Drosophila, ubiquitous expression of a short Cyclin G isoform generates extreme developmental noise estimated by fluctuating asymmetry (FA), providing a model to tackle developmental stability. This transcriptional cyclin interacts with chromatin regulators of the Enhancer of Trithorax and Polycomb (ETP) and Polycomb families. This led us to investigate the importance of these interactions in developmental stability. Deregulation of Cyclin G highlights an organ intrinsic control of developmental noise, linked to the ETP-interacting domain, and enhanced by mutations in genes encoding members of the Polycomb Repressive complexes PRC1 and PR-DUB. Deep-sequencing of wing imaginal discs deregulating CycG reveals that high developmental noise correlates with up-regulation of genes involved in translation and down-regulation of genes involved in energy production. Most Cyclin G direct transcriptional targets are also direct targets of PRC1 and RNAPolII in the developing wing. Altogether, our results suggest that Cyclin G, PRC1 and PR-DUB cooperate for developmental stability.


Asunto(s)
Ciclina G/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Complejo Represivo Polycomb 1/metabolismo , Animales , Animales Modificados Genéticamente , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Ciclina G/genética , Regulación hacia Abajo , Proteínas de Drosophila/genética , Femenino , Redes Reguladoras de Genes/fisiología , Masculino , Complejo Represivo Polycomb 1/genética , Unión Proteica/genética , Regulación hacia Arriba , Alas de Animales/embriología
6.
Microbiome ; 6(1): 105, 2018 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-29885666

RESUMEN

BACKGROUND: Study of meta-transcriptomic datasets involving non-model organisms represents bioinformatic challenges. The production of chimeric sequences and our inability to distinguish the taxonomic origins of the sequences produced are inherent and recurrent difficulties in de novo assembly analyses. As the study of holobiont meta-transcriptomes is affected by challenges invoked above, we propose an innovative bioinformatic approach to tackle such difficulties and tested it on marine models as a proof of concept. RESULTS: We considered three holobiont models, of which two transcriptomes were previously published and a yet unpublished transcriptome, to analyze and sort their raw reads using Short Read Connector, a k-mer based similarity method. Before assembly, we thus defined four distinct categories for each holobiont meta-transcriptome: host reads, symbiont reads, shared reads, and unassigned reads. Afterwards, we observed that independent de novo assemblies for each category led to a diminution of the number of chimeras compared to classical assembly methods. Moreover, the separation of each partner's transcriptome offered the independent and comparative exploration of their functional diversity in the holobiont. Finally, our strategy allowed to propose new functional annotations for two well-studied holobionts (a Cnidaria-Dinophyta, a Porifera-Bacteria) and a first meta-transcriptome from a planktonic Radiolaria-Dinophyta system forming widespread symbiotic association for which our knowledge is considerably limited. CONCLUSIONS: In contrast to classical assembly approaches, our bioinformatic strategy generates less de novo assembled chimera and allows biologists to study separately host and symbiont data from a holobiont mixture. The pre-assembly separation of reads using an efficient tool as Short Read Connector is an effective way to tackle meta-transcriptomic challenges and offers bright perpectives to study holobiont systems composed of either well-studied or poorly characterized symbiotic lineages and ultimately expand our knowledge about these associations.


Asunto(s)
Cnidarios/parasitología , Arrecifes de Coral , Poríferos/microbiología , Rhizaria/parasitología , Simbiosis/fisiología , Animales , Biología Computacional , Microalgas/metabolismo , Plancton/parasitología , Transcriptoma/genética
7.
Cell Physiol Biochem ; 47(4): 1338-1351, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29929186

RESUMEN

BACKGROUND/AIMS: Fatty acid oxidation (FAO), the main source of energy produced by tubular epithelial cells in the kidney, was found to be defective in tubulo-interstitial samples dissected out in kidney biopsies from patients with chronic kidney disease (CKD). Experimental data indicated that this decrease was a strong determinant of renal fibrogenesis, hence a focus for therapeutic interventions. Nevertheless, whether persistently differentiated renal tubules, surviving in a pro-fibrotic environment, also suffer from a decrease in FAO, is currently unknown. METHODS: To address this question, we isolated proximal tubules captured ex vivo on the basis of the expression of an intact brush border antigen (Prominin-1) in C57BL6/J mice subjected to a controlled, two-hit model of renal fibrosis (reversible ischemic acute kidney injury (AKI) or sham surgery, followed by angiotensin 2 administration). A transcriptomic high throughput sequencing was performed on total mRNA from these cells, and on whole kidneys. RESULTS: In contrast to mice subjected to sham surgery, mice with a history of AKI displayed histologically more renal fibrosis when exposed to angiotensin 2. High throughput RNA sequencing, principal component analysis and clustering showed marked consistency within experimental groups. As expected, FAO transcripts were decreased in whole fibrotic kidneys. Surprisingly, however, up- rather than down-regulation of metabolic pathways (oxidative phosphorylation, fatty acid metabolism, glycolysis, and PPAR signalling pathway) was a hallmark of the differentiated tubules captured from fibrotic kidneys. Immunofluorescence co-staining analysis confirmed that the expression of FAO enzymes was dependent of tubular trophicity. CONCLUSIONS: These data suggest that in differentiated proximal tubules energetic hyperactivity is promoted concurrently with organ fibrogenesis.


Asunto(s)
Lesión Renal Aguda/metabolismo , Ácidos Grasos/metabolismo , Túbulos Renales Proximales/metabolismo , Antígeno AC133/metabolismo , Lesión Renal Aguda/patología , Animales , Supervivencia Celular , Túbulos Renales Proximales/patología , Ratones , Oxidación-Reducción
8.
Mol Ecol ; 27(10): 2365-2380, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29624751

RESUMEN

Dinoflagellates are one of the most abundant and functionally diverse groups of eukaryotes. Despite an overall scarcity of genomic information for dinoflagellates, constantly emerging high-throughput sequencing resources can be used to characterize and compare these organisms. We assembled de novo and processed 46 dinoflagellate transcriptomes and used a sequence similarity network (SSN) to compare the underlying genomic basis of functional features within the group. This approach constitutes the most comprehensive picture to date of the genomic potential of dinoflagellates. A core-predicted proteome composed of 252 connected components (CCs) of putative conserved protein domains (pCDs) was identified. Of these, 206 were novel and 16 lacked any functional annotation in public databases. Integration of functional information in our network analyses allowed investigation of pCDs specifically associated with functional traits. With respect to toxicity, sequences homologous to those of proteins found in species with toxicity potential (e.g., sxtA4 and sxtG) were not specific to known toxin-producing species. Although not fully specific to symbiosis, the most represented functions associated with proteins involved in the symbiotic trait were related to membrane processes and ion transport. Overall, our SSN approach led to identification of 45,207 and 90,794 specific and constitutive pCDs of, respectively, the toxic and symbiotic species represented in our analyses. Of these, 56% and 57%, respectively (i.e., 25,393 and 52,193 pCDs), completely lacked annotation in public databases. This stresses the extent of our lack of knowledge, while emphasizing the potential of SSNs to identify candidate pCDs for further functional genomic characterization.


Asunto(s)
Dinoflagelados/genética , Transcriptoma , Conjuntos de Datos como Asunto , Dinoflagelados/fisiología , Perfilación de la Expresión Génica , Genoma , Proteoma , Simbiosis/genética
9.
Brain Sci ; 8(4)2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29565275

RESUMEN

Astrocytes are the most abundant glial cells of the central nervous system and have recently been recognized as crucial in the regulation of brain immunity. In most neuropathological conditions, astrocytes are prone to a radical phenotypical change called reactivity, which plays a key role in astrocyte contribution to neuroinflammation. However, how astrocytes regulate brain immunity in healthy conditions is an understudied question. One of the astroglial molecule involved in these regulations might be Connexin 43 (Cx43), a gap junction protein highly enriched in astrocyte perivascular endfeet-terminated processes forming the glia limitans. Indeed, Cx43 deletion in astrocytes (Cx43KO) promotes a continuous immune recruitment and an autoimmune response against an astrocyte protein, without inducing any brain lesion. To investigate the molecular basis of this unique immune response, we characterized the polysomal transcriptome of hippocampal astrocytes deleted for Cx43. Our results demonstrate that, in the absence of Cx43, astrocytes adopt an atypical reactive status with no change in most canonical astrogliosis markers, but with an upregulation of molecules promoting immune recruitment, complement activation as well as anti-inflammatory processes. Intriguingly, while several of these upregulated transcriptional events suggested an activation of the γ-interferon pathway, no increase in this cytokine or activation of related signaling pathways were found in Cx43KO. Finally, deletion of astroglial Cx43 was associated with the upregulation of several angiogenic factors, consistent with an increase in microvascular density in Cx43KO brains. Collectively, these results strongly suggest that Cx43 controls immunoregulatory and angiogenic properties of astrocytes.

10.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29543809

RESUMEN

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Asunto(s)
Biología Computacional/educación , Biología Computacional/métodos , Investigación/educación , Humanos , Proyectos de Investigación , Estudiantes , Universidades
11.
Biotechnol Biofuels ; 10: 209, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912831

RESUMEN

BACKGROUND: The hydrolysis of biomass to simple sugars used for the production of biofuels in biorefineries requires the action of cellulolytic enzyme mixtures. During the last 50 years, the ascomycete Trichoderma reesei, the main source of industrial cellulase and hemicellulase cocktails, has been subjected to several rounds of classical mutagenesis with the aim to obtain higher production levels. During these random genetic events, strains unable to produce cellulases were generated. Here, whole genome sequencing and transcriptomic analyses of the cellulase-negative strain QM9978 were used for the identification of mutations underlying this cellulase-negative phenotype. RESULTS: Sequence comparison of the cellulase-negative strain QM9978 to the reference strain QM6a identified a total of 43 mutations, of which 33 were located either close to or in coding regions. From those, we identified 23 single-nucleotide variants, nine InDels, and one translocation. The translocation occurred between chromosomes V and VII, is located upstream of the putative transcription factor vib1, and abolishes its expression in QM9978 as detected during the transcriptomic analyses. Ectopic expression of vib1 under the control of its native promoter as well as overexpression of vib1 under the control of a strong constitutive promoter restored cellulase expression in QM9978, thus confirming that the translocation event is the reason for the cellulase-negative phenotype. Gene deletion of vib1 in the moderate producer strain QM9414 and in the high producer strain Rut-C30 reduced cellulase expression in both cases. Overexpression of vib1 in QM9414 and Rut-C30 had no effect on cellulase production, most likely because vib1 is already expressed at an optimal level under normal conditions. CONCLUSION: We were able to establish a link between a chromosomal translocation in QM9978 and the cellulase-negative phenotype of the strain. We identified the transcription factor vib1 as a key regulator of cellulases in T. reesei whose expression is absent in QM9978. We propose that in T. reesei, as in Neurospora crassa, vib1 is involved in cellulase induction, although the exact mechanism remains to be elucidated. The data presented here show an example of a combined genome sequencing and transcriptomic approach to explain a specific trait, in this case the QM9978 cellulase-negative phenotype, and how it helps to better understand the mechanisms during cellulase gene regulation. When focusing on mutations on the single base-pair level, changes on the chromosome level can be easily overlooked and through this work we provide an example that stresses the importance of the big picture of the genomic landscape during analysis of sequencing data.

12.
Cell Discov ; 3: 17005, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28377822

RESUMEN

Astrocytes send out long processes that are terminated by endfeet at the vascular surface and regulate vascular functions as well as homeostasis at the vascular interface. To date, the astroglial mechanisms underlying these functions have been poorly addressed. Here we demonstrate that a subset of messenger RNAs is distributed in astrocyte endfeet. We identified, among this transcriptome, a pool of messenger RNAs bound to ribosomes, the endfeetome, that primarily encodes for secreted and membrane proteins. We detected nascent protein synthesis in astrocyte endfeet. Finally, we determined the presence of smooth and rough endoplasmic reticulum and the Golgi apparatus in astrocyte perivascular processes and endfeet, suggesting for local maturation of membrane and secreted proteins. These results demonstrate for the first time that protein synthesis occurs in astrocyte perivascular distal processes that may sustain their structural and functional polarization at the vascular interface.

13.
Bioinformatics ; 33(14): 2212-2213, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28369225

RESUMEN

MOTIVATION: Data management and quality control of output from Illumina sequencers is a disk space- and time-consuming task. Thus, we developed Aozan to automatically handle data transfer, demultiplexing, conversion and quality control once a run has finished. This software greatly improves run data management and the monitoring of run statistics via automatic emails and HTML web reports. AVAILABILITY AND IMPLEMENTATION: Aozan is implemented in Java and Python, supported on Linux systems, and distributed under the GPLv3 License at: http://www.outils.genomique.biologie.ens.fr/aozan/ . Aozan source code is available on GitHub: https://github.com/GenomicParisCentre/aozan . CONTACT: aozan@biologie.ens.fr.


Asunto(s)
Análisis de Secuencia de ADN , Programas Informáticos , Humanos , Control de Calidad
14.
Front Microbiol ; 7: 645, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27242683

RESUMEN

The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption, and iron metabolism.

16.
BMC Genomics ; 16: 326, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25909478

RESUMEN

BACKGROUND: Trichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a. RESULTS: In QM9136, we detected a surprisingly low number of mutagenic events in the promoter and coding regions of genes, i.e. only eight indels and six single nucleotide variants. One of these indels led to a frame-shift in the Zn2Cys6 transcription factor XYR1, the general regulator of cellulase and xylanase expression, and resulted in its C-terminal truncation by 140 amino acids. Retransformation of strain QM9136 with the wild-type xyr1 allele fully recovered the ability to produce cellulases, and is thus the reason for the cellulase-negative phenotype. Introduction of an engineered xyr1 allele containing the truncating point mutation into the moderate producer T. reesei QM9414 rendered this strain also cellulase-negative. The correspondingly truncated XYR1 protein was still able to enter the nucleus, but failed to be expressed over the basal constitutive level. CONCLUSION: The missing 140 C-terminal amino acids of XYR1 are therefore responsible for its previously observed auto-regulation which is essential for cellulases to be expressed. Our data present a working example of the use of genome sequencing leading to a functional explanation of the QM9136 cellulase-negative phenotype.


Asunto(s)
Celulasa/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Factores de Transcripción/genética , Trichoderma/enzimología , Trichoderma/genética , Alelos , Núcleo Celular/metabolismo , Celulasa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Análisis de Secuencia de ADN , Factores de Transcripción/química , Factores de Transcripción/metabolismo
17.
Yeast ; 31(10): 375-91, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25041923

RESUMEN

Peak calling is a critical step in ChIPseq data analysis. Choosing the correct algorithm as well as optimized parameters for a specific biological system is an essential task. In this article, we present an original peak-calling method (bPeaks) specifically designed to detect transcription factor (TF) binding sites in small eukaryotic genomes, such as in yeasts. As TF interactions with DNA are strong and generate high binding signals, bPeaks uses simple parameters to compare the sequences (reads) obtained from the immunoprecipitation (IP) with those from the control DNA (input). Because yeasts have small genomes (<20 Mb), our program has the advantage of using ChIPseq information at the single nucleotide level and can explore, in a reasonable computational time, results obtained with different sets of parameter values. Graphical outputs and text files are provided to rapidly assess the relevance of the detected peaks. Taking advantage of the simple promoter structure in yeasts, additional functions were implemented in bPeaks to automatically assign the peaks to promoter regions and retrieve peak coordinates on the DNA sequence for further predictions of regulatory motifs, enriched in the list of peaks. Applications of the bPeaks program to three different ChIPseq datasets from Saccharomyces cerevisiae, Candida albicans and Candida glabrata are presented. Each time, bPeaks allowed us to correctly predict the DNA binding sequence of the studied TF and provided relevant lists of peaks. The bioinformatics tool bPeaks is freely distributed to academic users. Supplementary data, together with detailed tutorials, are available online: http://bpeaks.gene-networks.net.


Asunto(s)
Algoritmos , Candida/genética , Biología Computacional/métodos , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Sitios de Unión , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo
18.
Biotechnol Biofuels ; 7(1): 173, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25550711

RESUMEN

BACKGROUND: The filamentous fungus Trichoderma reesei is the main industrial cellulolytic enzyme producer. Several strains have been developed in the past using random mutagenesis, and despite impressive performance enhancements, the pressure for low-cost cellulases has stimulated continuous research in the field. In this context, comparative study of the lower and higher producer strains obtained through random mutagenesis using systems biology tools (genome and transcriptome sequencing) can shed light on the mechanisms of cellulase production and help identify genes linked to performance. Previously, our group published comparative genome sequencing of the lower and higher producer strains NG 14 and RUT C30. In this follow-up work, we examine how these mutations affect phenotype as regards the transcriptome and cultivation behaviour. RESULTS: We performed kinetic transcriptome analysis of the NG 14 and RUT C30 strains of early enzyme production induced by lactose using bioreactor cultivations close to an industrial cultivation regime. RUT C30 exhibited both earlier onset of protein production (3 h) and higher steady-state productivity. A rather small number of genes compared to previous studies were regulated (568), most of them being specific to the NG 14 strain (319). Clustering analysis highlighted similar behaviour for some functional categories and allowed us to distinguish between induction-related genes and productivity-related genes. Cross-comparison of our transcriptome data with previously identified mutations revealed that most genes from our dataset have not been mutated. Interestingly, the few mutated genes belong to the same clusters, suggesting that these clusters contain genes playing a role in strain performance. CONCLUSIONS: This is the first kinetic analysis of a transcriptomic study carried out under conditions approaching industrial ones with two related strains of T. reesei showing distinctive cultivation behaviour. Our study sheds some light on some of the events occurring in these strains following induction by lactose. The fact that few regulated genes have been affected by mutagenesis suggests that the induction mechanism is essentially intact compared to that for the wild-type isolate QM6a and might be engineered for further improvement of T. reesei. Genes from two specific clusters might be potential targets for such genetic engineering.

19.
Nat Commun ; 4: 2091, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23820484

RESUMEN

DNA cytosine methylation is a widely conserved epigenetic mark in eukaryotes that appears to have critical roles in the regulation of genome structure and transcription. Genome-wide methylation maps have so far only been established from the supergroups Archaeplastida and Unikont. Here we report the first whole-genome methylome from a stramenopile, the marine model diatom Phaeodactylum tricornutum. Around 6% of the genome is intermittently methylated in a mosaic pattern. We find extensive methylation in transposable elements. We also detect methylation in over 320 genes. Extensive gene methylation correlates strongly with transcriptional silencing and differential expression under specific conditions. By contrast, we find that genes with partial methylation tend to be constitutively expressed. These patterns contrast with those found previously in other eukaryotes. By going beyond plants, animals and fungi, this stramenopile methylome adds significantly to our understanding of the evolution of DNA methylation in eukaryotes.


Asunto(s)
Metilación de ADN/genética , Diatomeas/genética , Genoma/genética , Cromosomas/genética , Elementos Transponibles de ADN/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Sitios Genéticos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
20.
BMC Genomics ; 14: 121, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23432824

RESUMEN

BACKGROUND: Trichoderma is a genus of mycotrophic filamentous fungi (teleomorph Hypocrea) which possess a bright variety of biotrophic and saprotrophic lifestyles. The ability to parasitize and/or kill other fungi (mycoparasitism) is used in plant protection against soil-borne fungal diseases (biological control, or biocontrol). To investigate mechanisms of mycoparasitism, we compared the transcriptional responses of cosmopolitan opportunistic species and powerful biocontrol agents Trichoderma atroviride and T. virens with tropical ecologically restricted species T. reesei during confrontations with a plant pathogenic fungus Rhizoctonia solani. RESULTS: The three Trichoderma spp. exhibited a strikingly different transcriptomic response already before physical contact with alien hyphae. T. atroviride expressed an array of genes involved in production of secondary metabolites, GH16 ß-glucanases, various proteases and small secreted cysteine rich proteins. T. virens, on the other hand, expressed mainly the genes for biosynthesis of gliotoxin, respective precursors and also glutathione, which is necessary for gliotoxin biosynthesis. In contrast, T. reesei increased the expression of genes encoding cellulases and hemicellulases, and of the genes involved in solute transport. The majority of differentially regulated genes were orthologues present in all three species or both in T. atroviride and T. virens, indicating that the regulation of expression of these genes is different in the three Trichoderma spp. The genes expressed in all three fungi exhibited a nonrandom genomic distribution, indicating a possibility for their regulation via chromatin modification. CONCLUSION: This genome-wide expression study demonstrates that the initial Trichoderma mycotrophy has differentiated into several alternative ecological strategies ranging from parasitism to predation and saprotrophy. It provides first insights into the mechanisms of interactions between Trichoderma and other fungi that may be exploited for further development of biofungicides.


Asunto(s)
Perfilación de la Expresión Génica , Interacciones Microbianas/genética , Trichoderma/genética , Trichoderma/fisiología , Regulación hacia Abajo , Genes Fúngicos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Rhizoctonia/fisiología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA