Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oncogene ; 42(28): 2218-2233, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37301928

RESUMEN

Neuroblastoma is a pediatric cancer that can present as low- or high-risk tumors (LR-NBs and HR-NBs), the latter group showing poor prognosis due to metastasis and strong resistance to current therapy. Whether LR-NBs and HR-NBs differ in the way they exploit the transcriptional program underlying their neural crest, sympatho-adrenal origin remains unclear. Here, we identified the transcriptional signature distinguishing LR-NBs from HR-NBs, which consists mainly of genes that belong to the core sympatho-adrenal developmental program and are associated with favorable patient prognosis and with diminished disease progression. Gain- and loss-of-function experiments revealed that the top candidate gene of this signature, Neurexophilin-1 (NXPH1), has a dual impact on NB cell behavior in vivo: whereas NXPH1 and its receptor α-NRXN1 promote NB tumor growth by stimulating cell proliferation, they conversely inhibit organotropic colonization and metastasis. As suggested by RNA-seq analyses, these effects might result from the ability of NXPH1/α-NRXN signalling to restrain the conversion of NB cells from an adrenergic state to a mesenchymal one. Our findings thus uncover a transcriptional module of the sympatho-adrenal program that opposes neuroblastoma malignancy by impeding metastasis, and pinpoint NXPH1/α-NRXN signaling as a promising target to treat HR-NBs.


Asunto(s)
Neuroblastoma , Neuropéptidos , Niño , Humanos , Cresta Neural/patología , Neuroblastoma/genética , Neuroblastoma/patología , Neuropéptidos/genética , Glicoproteínas
2.
Front Neurosci ; 15: 819990, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153664

RESUMEN

Bone morphogenetic proteins (BMPs) are secreted factors that contribute to many aspects of the formation of the vertebrate central nervous system (CNS), from the initial shaping of the neural primordium to the maturation of the brain and spinal cord. In particular, the canonical (SMAD1/5/8-dependent) BMP pathway appears to play a key role during neurogenesis, its activity dictating neural stem cell fate decisions and thereby regulating the growth and homeostasis of the CNS. In this mini-review, I summarize accumulating evidence demonstrating how the canonical BMP activity promotes the amplification and/or maintenance of neural stem cells at different times and in diverse regions of the vertebrate CNS, and highlight findings suggesting that this function is evolutionarily conserved.

3.
Development ; 147(13)2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32541003

RESUMEN

The growth and evolutionary expansion of the cerebral cortex are defined by the spatial-temporal production of neurons, which itself depends on the decision of radial glial cells (RGCs) to self-amplify or to switch to neurogenic divisions. The mechanisms regulating these RGC fate decisions are still incompletely understood. Here, we describe a novel and evolutionarily conserved role of the canonical BMP transcription factors SMAD1/5 in controlling neurogenesis and growth during corticogenesis. Reducing the expression of both SMAD1 and SMAD5 in neural progenitors at early mouse cortical development caused microcephaly and an increased production of early-born cortical neurons at the expense of late-born ones, which correlated with the premature differentiation and depletion of the pool of cortical progenitors. Gain- and loss-of-function experiments performed during early cortical neurogenesis in the chick revealed that SMAD1/5 activity supports self-amplifying RGC divisions and restrains the neurogenic ones. Furthermore, we demonstrate that SMAD1/5 stimulate RGC self-amplification through the positive post-transcriptional regulation of the Hippo signalling effector YAP. We anticipate this SMAD1/5-YAP signalling module to be fundamental in controlling growth and evolution of the amniote cerebral cortex.


Asunto(s)
Corteza Cerebral/metabolismo , Células-Madre Neurales/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Corteza Cerebral/embriología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Femenino , Ratones , Neurogénesis/genética , Neurogénesis/fisiología , Transducción de Señal/fisiología , Proteína Smad1/genética , Proteína Smad5/genética , Proteínas Señalizadoras YAP
4.
Elife ; 72018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30095408

RESUMEN

Class II HLH proteins heterodimerize with class I HLH/E proteins to regulate transcription. Here, we show that E proteins sharpen neurogenesis by adjusting the neurogenic strength of the distinct proneural proteins. We find that inhibiting BMP signaling or its target ID2 in the chick embryo spinal cord, impairs the neuronal production from progenitors expressing ATOH1/ASCL1, but less severely that from progenitors expressing NEUROG1/2/PTF1a. We show this context-dependent response to result from the differential modulation of proneural proteins' activity by E proteins. E proteins synergize with proneural proteins when acting on CAGSTG motifs, thereby facilitating the activity of ASCL1/ATOH1 which preferentially bind to such motifs. Conversely, E proteins restrict the neurogenic strength of NEUROG1/2 by directly inhibiting their preferential binding to CADATG motifs. Since we find this mechanism to be conserved in corticogenesis, we propose this differential co-operation of E proteins with proneural proteins as a novel though general feature of their mechanism of action.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis , Animales , Sitios de Unión , Embrión de Pollo , Unión Proteica
5.
J Cell Biol ; 204(4): 591-605, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24515346

RESUMEN

The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis. However, the mechanisms controlling such events are not fully understood. We have developed markers that provide the single cell resolution necessary to identify the three modes of division occurring in a developing nervous system: self-expanding, self-renewing, and self-consuming. Characterizing these three modes of division during interneuron generation in the developing chick spinal cord, we demonstrated that they correlate to different levels of activity of the canonical bone morphogenetic protein effectors SMAD1/5. Functional in vivo experiments showed that the premature neuronal differentiation and changes in cell cycle parameters caused by SMAD1/5 inhibition were preceded by a reduction of self-expanding divisions in favor of self-consuming divisions. Conversely, SMAD1/5 gain of function promoted self-expanding divisions. Together, these results lead us to propose that the strength of SMAD1/5 activity dictates the mode of stem cell division during spinal interneuron generation.


Asunto(s)
División Celular/fisiología , Embrión de Pollo/metabolismo , Neuronas/citología , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Médula Espinal/citología , Células Madre/citología , Animales , Western Blotting , Ciclo Celular , Linaje de la Célula , Proliferación Celular , Embrión de Pollo/citología , Citometría de Flujo , Técnicas para Inmunoenzimas , Hibridación in Situ , Neuronas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Smad1/genética , Proteína Smad5/genética , Médula Espinal/metabolismo , Células Madre/metabolismo
6.
Cell Rep ; 4(3): 492-503, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23891002

RESUMEN

The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis, and these regulatory processes are subverted in tumor formation. Here, we developed markers that provided the single-cell resolution necessary to quantify the three modes of division taking place in the developing nervous system in vivo: self-expanding, PP; self-replacing, PN; and self-consuming, NN. Using these markers and a mathematical model that predicts the dynamics of motor neuron progenitor division, we identify a role for the morphogen Sonic hedgehog in the maintenance of stem cell identity in the developing spinal cord. Moreover, our study provides insight into the process linking lineage commitment to neurogenesis with changes in cell-cycle parameters. As a result, we propose a challenging model in which the external Sonic hedgehog signal dictates stem cell identity, reflected in the consequent readjustment of cell-cycle parameters.


Asunto(s)
Proteínas Hedgehog/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Embrión de Pollo , Pollos , Proteínas Hedgehog/genética , Modelos Neurológicos , Neurogénesis , Transducción de Señal
7.
Cell Mol Life Sci ; 70(22): 4293-305, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23673983

RESUMEN

Bone morphogenetic proteins (BMPs) are one of the main classes of multi-faceted secreted factors that drive vertebrate development. A growing body of evidence indicates that BMPs contribute to the formation of the central nervous system throughout its development, from the initial shaping of the neural primordium to the generation and maturation of the different cell types that form the functional adult nervous tissue. In this review, we focus on the multiple activities of BMPs during spinal cord development, paying particular attention to recent results that highlight the complexity of BMP signaling during this process. These findings emphasize the unique capacity of these signals to mediate various functions in the same tissue throughout development, recruiting diverse effectors and strategies to instruct their target cells.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Médula Espinal/metabolismo , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Humanos , Neuronas/metabolismo , Transducción de Señal , Médula Espinal/crecimiento & desarrollo
8.
Development ; 140(7): 1467-74, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462473

RESUMEN

The conventional explanation for how a morphogen patterns a tissue holds that cells interpret different concentrations of an extrinsic ligand by producing corresponding levels of intracellular signalling activity, which in turn regulate differential gene expression. However, this view has been challenged, raising the possibility that distinct mechanisms are used to interpret different morphogens. Here, we investigate graded BMP signalling in the vertebrate neural tube. We show that defined exposure times to Bmp4 generate distinct levels of signalling and induce specific dorsal identities. Moreover, we provide evidence that a dynamic gradient of BMP activity confers progressively more dorsal neural identities in vivo. These results highlight a strategy for morphogen interpretation in which the tight temporal control of signalling is important for the spatial pattern of cellular differentiation.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Tubo Neural/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/fisiología , Proteína Morfogenética Ósea 4/farmacología , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Morfogenéticas Óseas/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Tubo Neural/citología , Tubo Neural/efectos de los fármacos , Tubo Neural/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Médula Espinal/efectos de los fármacos , Médula Espinal/embriología , Médula Espinal/metabolismo
9.
J Neurosci ; 33(7): 2773-83, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407937

RESUMEN

Neuroblastoma is an embryonic tumor derived from cells of the neural crest. Taking advantage of a newly developed neural crest lineage tracer and based on the hypothesis that the molecular mechanisms that mediate neural crest delamination are also likely to be involved in the spread of neuroblastoma, we were able to identify genes that are active both in neural crest development and neuroblastoma tumor formation. A subsequent search of the neuroblastoma gene server for human orthologues of genes differentially expressed in the chick embryo neural crest screen retrieved the LIM domain only protein 4 (LMO4), which was expressed in both cell types analyzed. Functional experiments in these two model systems revealed that LMO4 activity is required for neuroblastoma cell invasion and neural crest delamination. Moreover, we identified LMO4 as an essential cofactor in Snail2-mediated cadherin repression and in the epithelial-to-mesenchymal transition of both neural crest and neuroblastoma cells. Together, our results suggest that the association of high levels of LMO4 with aggressive neuroblastomas is dependent on LMO4 regulation of cadherin expression and hence, tumor invasiveness.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Neoplasias Encefálicas/patología , Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/fisiología , Cresta Neural/patología , Neuroblastoma/patología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Animales , Western Blotting , Cadherinas/biosíntesis , Cadherinas/fisiología , Línea Celular Tumoral , Embrión de Pollo , ADN/genética , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Vectores Genéticos , Humanos , Inmunohistoquímica , Hibridación in Situ , Lentivirus/genética , Luciferasas/fisiología , Análisis por Micromatrices , Invasividad Neoplásica/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción de la Familia Snail , Timidina/metabolismo
10.
Dev Neurobiol ; 72(12): 1471-81, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22821665

RESUMEN

Development of the vertebrate nervous system begins with the acquisition of neural identity from the midline dorsal-ectodermal cells of the gastrulating embryos. The subsequent progressive specification of the neural plate along its anterior-posterior and dorsal-ventral (DV) axes allows the generation of the tremendous variety of neuronal and glial cells that compose the vertebrate central nervous system (CNS). Studies on the development of the spinal cord, the anatomically simplest part of the CNS, have generated most of our current knowledge on the signaling events and the genetic networks that orchestrate the DV patterning of the neural plate. In this review, we discuss the recent advances in our understanding of these events and highlight unresolved questions. We focused our attention on the activity and the integration of the three main instructive cues: Sonic hedgehog, the Wnts and the Bone Morphogenetic Proteins, giving particular attention to the less well understood dorsal signaling events.


Asunto(s)
Tipificación del Cuerpo/fisiología , Tubo Neural/fisiología , Neurogénesis/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Proteínas Wnt/metabolismo
11.
Dev Neurobiol ; 72(11): 1363-75, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22038708

RESUMEN

NOV/CCN3 is one of the founding members of the CCN (Cyr61 CTGF NOV) family. In the avian retina, CCN3 expression is mostly located within the central region of the inner nuclear layer. As retinal development progresses and this retinal layer differentiates and matures, CCN3 expression forms a dorsal-ventral and a central-peripheral gradient. CCN3 is produced by two glial cell types, peripapillary cells and Müller cells, as well as by horizontal, amacrine, and bipolar interneurons. In retinal neurons and Müller cell cultures, CCN3 expression is induced by activated BMP signaling, whereas Notch signaling decreases CCN3 mRNA and protein levels in Müller cells and has no effect in retinal neurons. In Müller cells, the CCN3 expression detected may thus result from a balance between the Notch and BMP signaling pathways.


Asunto(s)
Proteína Hiperexpresada del Nefroblastoma/metabolismo , ARN Mensajero/análisis , Retina , Neuronas Retinianas/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica , Neuroglía/metabolismo , Receptor Notch1/metabolismo , Retina/embriología , Retina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
12.
Development ; 139(2): 259-68, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22159578

RESUMEN

BMP activity is essential for many steps of neural development, including the initial role in neural induction and the control of progenitor identities along the dorsal-ventral axis of the neural tube. Taking advantage of chick in ovo electroporation, we show a novel role for BMP7 at the time of neurogenesis initiation in the spinal cord. Using in vivo loss-of-function experiments, we show that BMP7 activity is required for the generation of three discrete subpopulations of dorsal interneurons: dI1-dI3-dI5. Analysis of the BMP7 mouse mutant shows the conservation of this activity in mammals. Furthermore, this BMP7 activity appears to be mediated by the canonical Smad pathway, as we demonstrate that Smad1 and Smad5 activities are similarly required for the generation of dI1-dI3-dI5. Moreover, we show that this role is independent of the patterned expression of progenitor proteins in the dorsal spinal cord, but depends on the BMP/Smad regulation of specific proneural proteins, thus narrowing this BMP7 activity to the time of neurogenesis. Together, these data establish a novel role for BMP7 in primary neurogenesis, the process by which a neural progenitor exits the cell cycle and enters the terminal differentiation pathway.


Asunto(s)
Proteína Morfogenética Ósea 7/metabolismo , Interneuronas/fisiología , Neurogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Smad Reguladas por Receptores/metabolismo , Médula Espinal/embriología , Análisis de Varianza , Animales , Embrión de Pollo , Inmunohistoquímica , Hibridación in Situ , Interneuronas/metabolismo , Luciferasas , Ratones , Mutación/genética , Neurogénesis/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Smad Reguladas por Receptores/genética
13.
Development ; 136(19): 3301-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19736325

RESUMEN

The canonical Wnt and sonic hedgehog (Shh) pathways have been independently linked to cell proliferation in a variety of tissues and systems. However, interaction of these signals in the control of cell cycle progression has not been studied. Here, we demonstrate that in the developing vertebrate nervous system these pathways genetically interact to control progression of the G1 phase of the cell cycle. By in vivo loss-of-function experiments, we demonstrate the absolute requirement of an upstream Shh activity for the regulation of Tcf3/4 expression. In the absence of Tcf3/4, the canonical Wnt pathway cannot activate target gene expression, including that of cyclin D1, and the cell cycle is necessarily arrested at G1. In addition to the control of G1 progression, Shh activity controls the G2 phase through the regulation of cyclin E, cyclin A and cyclin B expression, and this is achieved independently of Wnt. Thus, in neural progenitors, cell cycle progression is co-ordinately regulated by Wnt and Shh activities.


Asunto(s)
Proteínas Hedgehog/fisiología , Neuronas/citología , Neuronas/fisiología , Proteínas Wnt/fisiología , Animales , Animales Modificados Genéticamente , Ciclo Celular , Proliferación Celular , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Embrión de Pollo , Ciclina D1/genética , Ciclina D1/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Noqueados , Modelos Biológicos , Transducción de Señal , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/fisiología , Proteína 1 Similar al Factor de Transcripción 7
14.
Exp Cell Res ; 312(10): 1876-89, 2006 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-16600215

RESUMEN

NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10(-6) M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Musculares/fisiología , Músculo Esquelético/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo , Medios de Cultivo/química , Genes Reporteros , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Inmediatas-Precoces/genética , Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Morfogénesis , Células Musculares/citología , Músculo Esquelético/citología , Proteína MioD/genética , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Proteína Hiperexpresada del Nefroblastoma , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Factor de Transcripción HES-1
15.
J Bone Miner Res ; 20(12): 2213-23, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16294274

RESUMEN

UNLABELLED: We studied the involvement of NOV/CCN3, whose function is poorly understood, in chondrocyte differentiation. NOV was found to upregulate TGF-beta2 and type X collagen and to act as a downstream effector of TGF-beta1 in ATDC5 and primary chondrocytes. Thus, NOV is a positive modulator of chondrogenesis. INTRODUCTION: NOV/CCN3 is a matricellular protein that belongs to the CCN family. A growing body of evidence indicates that NOV could play a role in cell differentiation, particularly in chondrogenesis. During chick embryo development, NOV expression is tightly regulated in cartilage, and a high expression of NOV has been associated with cartilage differentiation in Wilms' tumors. However, a precise role for NOV and potential target genes of NOV in chondrogenesis are unknown. MATERIALS AND METHODS: ATDC5 cells and primary chondrocytes were either treated with NOV recombinant protein or transfected with a NOV-specific siRNA to determine, using quantitative RT-PCR, the effect of NOV on the expression of several molecules involved in chondrocyte differentiation. Stable ATDC5 clones expressing NOV were also established to show that NOV was a downstream effector of TGF-beta1. RESULTS: We established that NOV/CCN3 expression increases in ATDC5 cells at early stages of chondrogenic differentiation and precedes the appearance of TGF-beta2 and of several chondrocytic markers such as SOX9 or type X collagen. When exogenously administered, NOV recombinant protein up-regulates TGF-beta2 and type X collagen mRNA levels both in ATDC5 cells and in primary mouse chondrocytes but does not influence SOX9 expression. This regulation also occurs at the endogenous level because downregulation of NOV expression is correlated with an inhibition of TGF-beta2 and type X collagen in primary chondrocytes. Furthermore, we found that NOV expression is downregulated when chondrocytes are exposed to TGF-beta1-dedifferentiating treatment in chondrocytes, further providing evidence that NOV may counteract TGF-beta1 effects on chondrocytes. CONCLUSIONS: This study provides the first characterization of two new targets of NOV involved in chondrocyte differentiation, shows that NOV acts with TGF-beta1 in a cascade of gene regulation, and indicates that NOV is a positive modulator of chondrogenesis.


Asunto(s)
Condrocitos/metabolismo , Colágeno Tipo X/genética , Proteínas Inmediatas-Precoces/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Factor de Crecimiento Transformador beta/genética , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Colágeno Tipo II/genética , Factor de Crecimiento del Tejido Conjuntivo , Expresión Génica/efectos de los fármacos , Proteínas del Grupo de Alta Movilidad/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/farmacología , Insulina/farmacología , Integrina alfa5beta1/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Proteína Hiperexpresada del Nefroblastoma , Proteínas/farmacología , ARN Interferente Pequeño/genética , Factor de Transcripción SOX9 , Factores de Transcripción/genética , Transfección , Factor de Crecimiento Transformador beta2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...