Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Intervalo de año de publicación
1.
Plant J ; 118(4): 1016-1035, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38281242

RESUMEN

The secretory pathway is essential for plant immunity, delivering diverse antimicrobial molecules into the extracellular space. Arabidopsis thaliana soluble N-ethylmaleimide-sensitive-factor attachment protein receptor SNAP33 is a key actor of this process. The snap33 mutant displays dwarfism and necrotic lesions, however the molecular determinants of its macroscopic phenotypes remain elusive. Here, we isolated several new snap33 mutants that exhibited constitutive cell death and H2O2 accumulation, further defining snap33 as an autoimmune mutant. We then carried out quantitative transcriptomic and proteomic analyses showing that numerous defense transcripts and proteins were up-regulated in the snap33 mutant, among which genes/proteins involved in defense hormone, pattern-triggered immunity, and nucleotide-binding domain leucine-rich-repeat receptor signaling. qRT-PCR analyses and hormone dosages supported these results. Furthermore, genetic analyses elucidated the diverse contributions of the main defense hormones and some nucleotide-binding domain leucine-rich-repeat receptor signaling actors in the establishment of the snap33 phenotype, emphasizing the preponderant role of salicylic acid over other defense phytohormones. Moreover, the accumulation of pattern-triggered immunity and nucleotide-binding domain leucine-rich-repeat receptor signaling proteins in the snap33 mutant was confirmed by immunoblotting analyses and further shown to be salicylic acid-dependent. Collectively, this study unveiled molecular determinants underlying the Arabidopsis snap33 mutant phenotype and brought new insights into autoimmunity signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inmunidad de la Planta/genética , Proteómica , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Ácido Salicílico/metabolismo , Peróxido de Hidrógeno/metabolismo , Multiómica
2.
Front Plant Sci ; 14: 1237054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662181

RESUMEN

Losses due to disease and climate change are among the most important issues currently facing crop production. It is therefore important to establish the impact of climate change, and particularly of high carbon dioxide (hCO2), on plant immunity in cereals, which provide 60% of human calories. The aim of this study was to determine if hCO2 impacts Brachypodium distachyon immunity, a model plant for temperate cereals. Plants were grown in air (430 ppm CO2) and at two high CO2 conditions, one that is relevant to projections within the coming century (1000 ppm) and a concentration sufficient to saturate photosynthesis (3000 ppm). The following measurements were performed: phenotyping and growth, salicylic acid contents, pathogen resistance tests, and RNAseq analysis of the transcriptome. Improved shoot development was observed at both 1000 and 3000 ppm. A transcriptomic analysis pointed to an increase in primary metabolism capacity under hCO2. Alongside this effect, up-regulation of genes associated with secondary metabolism was also observed. This effect was especially evident for the terpenoid and phenylpropanoid pathways, and was accompanied by enhanced expression of immunity-related genes and accumulation of salicylic acid. Pathogen tests using the fungus Magnaporthe oryzae revealed that hCO2 had a complex effect, with enhanced susceptibility to infection but no increase in fungal development. The study reveals that immunity in B. distachyon is modulated by growth at hCO2 and allows identification of pathways that might play a role in this effect.

3.
Plants (Basel) ; 11(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956473

RESUMEN

Bean anthracnose caused by the hemibiotrophic fungus Colletotrichum lindemuthianum is one of the most important diseases of common bean (Phaseolus vulgaris) in the world. In the present study, the whole transcriptome of common bean infected with C. lindemuthianum during compatible and incompatible interactions was characterized at 48 and 72 hpi, corresponding to the biotrophy phase of the infection cycle. Our results highlight the prominent role of pathogenesis-related (PR) genes from the PR10/Bet vI family as well as a complex interplay of different plant hormone pathways including Ethylene, Salicylic acid (SA) and Jasmonic acid pathways. Gene Ontology enrichment analysis reveals that infected common bean seedlings responded by down-regulation of photosynthesis, ubiquitination-mediated proteolysis and cell wall modifications. In infected common bean, SA biosynthesis seems to be based on the PAL pathway instead of the ICS pathway, contrarily to what is described in Arabidopsis. Interestingly, ~30 NLR were up-regulated in both contexts. Overall, our results suggest that the difference between the compatible and incompatible reaction is more a question of timing and strength, than a massive difference in differentially expressed genes between these two contexts. Finally, we used RT-qPCR to validate the expression patterns of several genes, and the results showed an excellent agreement with deep sequencing.

4.
J Vis Exp ; (185)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35969075

RESUMEN

The proper use of statistical modeling in NGS data analysis requires an advanced level of expertise. There has recently been a growing consensus on using generalized linear models for differential analysis of RNA-Seq data and the advantage of mixture models to perform co-expression analysis. To offer a managed setting to use these modeling approaches, we developed DiCoExpress that provides a standardized R pipeline to perform an RNA-Seq analysis. Without any particular knowledge in statistics or R programming, beginners can perform a complete RNA-Seq analysis from quality controls to co-expression through differential analysis based on contrasts inside a generalized linear model. An enrichment analysis is proposed both on the lists of differentially expressed genes, and the co-expressed gene clusters. This video tutorial is conceived as a step-by-step protocol to help users take full advantage of DiCoExpress and its potential in empowering the biological interpretation of an RNA-Seq experiment.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , RNA-Seq , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Secuenciación del Exoma
6.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769110

RESUMEN

The early and specific diagnosis of a macronutrient deficiency is challenging when seeking to better manage fertilizer inputs in the context of sustainable agriculture. Consequently, this study explored the potential for transcriptomic and metabolomic analysis of Brassica napus roots to characterize the effects of six individual macronutrient deprivations (N, Mg, P, S, K, and Ca). Our results showed that before any visual phenotypic response, all macronutrient deprivations led to a large modulation of the transcriptome and metabolome involved in various metabolic pathways, and some were common to all macronutrient deprivations. Significantly, comparative transcriptomic analysis allowed the definition of a subset of 3282, 2011, 6325, 1384, 439, and 5157 differentially expressed genes (DEGs) specific to N, Mg, P, S, K, and Ca deprivations, respectively. Surprisingly, gene ontology term enrichment analysis performed on this subset of specific DEGs highlighted biological processes that are common to a number of these macronutrient deprivations, illustrating the complexity of nutrient interactions. In addition, a set of 38 biochemical compounds that discriminated the macronutrient deprivations was identified using a metabolic approach. The opportunity to use these specific DEGs and/or biochemical compounds as potential molecular indicators to diagnose macronutrient deficiency is discussed.


Asunto(s)
Brassica napus/metabolismo , Metaboloma , Nutrientes/deficiencia , Raíces de Plantas/metabolismo , Estrés Fisiológico , Valor Nutritivo , Proteómica
7.
Front Plant Sci ; 12: 807798, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185958

RESUMEN

Owing to the large genetic diversity of barley and its resilience under harsh environments, this crop is of great value for agroecological transition and the need for reduction of nitrogen (N) fertilizers inputs. In the present work, we investigated the diversity of a North African barley genotype collection in terms of growth under limiting N (LN) or ample N (HN) supply and in terms of physiological traits including amino acid content in young seedlings. We identified a Moroccan variety, Laanaceur, accumulating five times more lysine in its leaves than the others under both N nutritional regimes. Physiological characterization of the barley collection showed the genetic diversity of barley adaptation strategies to LN and highlighted a genotype x environment interaction. In all genotypes, N limitation resulted in global biomass reduction, an increase in C concentration, and a higher resource allocation to the roots, indicating that this organ undergoes important adaptive metabolic activity. The most important diversity concerned leaf nitrogen use efficiency (LNUE), root nitrogen use efficiency (RNUE), root nitrogen uptake efficiency (RNUpE), and leaf nitrogen uptake efficiency (LNUpE). Using LNUE as a target trait reflecting barley capacity to deal with N limitation, this trait was positively correlated with plant nitrogen uptake efficiency (PNUpE) and RNUpE. Based on the LNUE trait, we determined three classes showing high, moderate, or low tolerance to N limitation. The transcriptomic approach showed that signaling, ionic transport, immunity, and stress response were the major functions affected by N supply. A candidate gene encoding the HvNRT2.10 transporter was commonly up-regulated under LN in the three barley genotypes investigated. Genes encoding key enzymes required for lysine biosynthesis in plants, dihydrodipicolinate synthase (DHPS) and the catabolic enzyme, the bifunctional Lys-ketoglutarate reductase/saccharopine dehydrogenase are up-regulated in Laanaceur and likely account for a hyperaccumulation of lysine in this genotype. Our work provides key physiological markers of North African barley response to low N availability in the early developmental stages.

8.
Genes (Basel) ; 13(1)2021 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-35052407

RESUMEN

RNA silencing serves key roles in a multitude of cellular processes, including development, stress responses, metabolism, and maintenance of genome integrity. Dicer, Argonaute (AGO), double-stranded RNA binding (DRB) proteins, RNA-dependent RNA polymerase (RDR), and DNA-dependent RNA polymerases known as Pol IV and Pol V form core components to trigger RNA silencing. Common bean (Phaseolus vulgaris) is an important staple crop worldwide. In this study, we aimed to unravel the components of the RNA-guided silencing pathway in this non-model plant, taking advantage of the availability of two genome assemblies of Andean and Meso-American origin. We identified six PvDCLs, thirteen PvAGOs, 10 PvDRBs, 5 PvRDRs, in both genotypes, suggesting no recent gene amplification or deletion after the gene pool separation. In addition, we identified one PvNRPD1 and one PvNRPE1 encoding the largest subunits of Pol IV and Pol V, respectively. These genes were categorized into subgroups based on phylogenetic analyses. Comprehensive analyses of gene structure, genomic localization, and similarity among these genes were performed. Their expression patterns were investigated by means of expression models in different organs using online data and quantitative RT-PCR after pathogen infection. Several of the candidate genes were up-regulated after infection with the fungus Colletotrichum lindemuthianum.


Asunto(s)
Colletotrichum/fisiología , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Phaseolus/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Interferencia de ARN , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Phaseolus/crecimiento & desarrollo , Phaseolus/inmunología , Phaseolus/microbiología , Filogenia , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Transcriptoma
9.
New Phytol ; 229(4): 2192-2205, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33020928

RESUMEN

Ethylene and reactive oxygen species (ROS) regulate seed dormancy alleviation, but the molecular basis of their action and crosstalk remains largely unknown. Here we studied the mechanism of Arabidopsis seed dormancy release by ethylene using cell imaging, and genetic and transcriptomics approaches, in order to tackle its possible interaction with ROS homeostasis. We found that the effect of ethylene on seed germination required ROS production by the mitochondrial electron transport chain. Seed response to ethylene involved a mitochondrial retrograde response (MRR) through nuclear ROS production and upregulation of the MRR components AOX1a and ANAC013, but also required the activation of the ethylene canonical pathway. Together our data allowed deciphering of the mode of action of ethylene on seed germination and the associated dynamics of ROS production. Our findings highlight the occurrence of retrograde signalling in seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Germinación , Mitocondrias/metabolismo , Latencia en las Plantas , Semillas/metabolismo , Factores de Transcripción/metabolismo
10.
Plant Methods ; 16: 68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426025

RESUMEN

BACKGROUND: RNAseq is nowadays the method of choice for transcriptome analysis. In the last decades, a high number of statistical methods, and associated bioinformatics tools, for RNAseq analysis were developed. More recently, statistical studies realised neutral comparison studies using benchmark datasets, shedding light on the most appropriate approaches for RNAseq data analysis. RESULTS: DiCoExpress is a script-based tool implemented in R that includes methods chosen based on their performance in neutral comparisons studies. DiCoExpress uses pre-existing R packages including FactoMineR, edgeR and coseq, to perform quality control, differential, and co-expression analysis of RNAseq data. Users can perform the full analysis, providing a mapped read expression data file and a file containing the information on the experimental design. Following the quality control step, the user can move on to the differential expression analysis performed using generalized linear models thanks to the automated contrast writing function. A co-expression analysis is implemented using the coseq package. Lists of differentially expressed genes and identified co-expression clusters are automatically analyzed for enrichment of annotations provided by the user. We used DiCoExpress to analyze a publicly available RNAseq dataset on the transcriptional response of Brassica napus L. to silicon treatment in plant roots and mature leaves. This dataset, including two biological factors and three replicates for each condition, allowed us to demonstrate in a tutorial all the features of DiCoExpress. CONCLUSIONS: DiCoExpress is an R script-based tool allowing users to perform a full RNAseq analysis from quality controls to co-expression analysis through differential analysis based on contrasts inside generalized linear models. DiCoExpress focuses on the statistical modelling of gene expression according to the experimental design and facilitates the data analysis leading the biological interpretation of the results.

11.
Cell Rep ; 27(12): 3696-3708.e5, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216485

RESUMEN

The target of rapamycin (TOR) kinase is a conserved energy sensor that regulates growth in response to environmental cues. However, little is known about the TOR signaling pathway in plants. We used Arabidopsis lines affected in the lethal with SEC13 protein 8 (LST8-1) gene, a core element of the TOR complex, to search for suppressor mutations. Two suppressor lines with improved growth were isolated that carried mutations in the Yet Another Kinase 1 (AtYAK1) gene encoding a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family. Atyak1 mutations partly rescued the developmental defects of lst8-1-1 mutants and conferred resistance to the TOR inhibitor AZD-8055. Moreover, atyak1 mutations suppressed the transcriptomic and metabolic perturbations as well as the abscisic acid (ABA) hypersensitivity of the lst8-1-1 mutants. AtYAK1 interacted with the regulatory-associated protein of TOR (RAPTOR), a component of the TOR complex, and was phosphorylated by TOR. Thus, our findings reveal that AtYAK1 is a TOR effector that probably needs to be switched off to activate plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal
12.
Syst Appl Microbiol ; 42(4): 448-456, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31031015

RESUMEN

With a view to introducing white lupin (Lupinus albus L.) for cultivation in Tunisian calcareous soils, compatible indigenous rhizobia for nitrogen-fixing symbiosis were investigated and characterized. Two L. albus varieties, Mekna and Lumen, were used to trap rhizobia in soil samples collected from 56 sites with high active lime contents (0-49%). Nodulation occurred in only 15 soils. The local variety, Mekna, developed significantly more root nodules and had a trapping capacity in more soils than the imported variety Lumen. A phylogenetic analysis based on the partial 16S-23S ribosomal RNA internal transcribed spacer region (ITS) and multi-locus sequence analysis (MLSA) of three chromosomal housekeeping genes, recA, atpD and dnaK, showed that strains were affiliated to Agrobacterium, Rhizobium, and Neorhizobium, with large internal diversity, including separate lineages. Infectivity tests highlighted some nodulation specificity at the plant variety level, since the strains originating from Mekna could only nodulate this variety, while strains trapped in Lumen could nodulate both varieties. When inoculated, almost all strains resulted in a significant increase in plant shoot dry weight on L. albus. Although Agrobacterium sp. strains isolated from L. albus could nodulate and had a plant growth promoting effect, no nodA and nodC genes could be amplified. This is discussed together with the absence of bradyrhizobia and the general infrequency of L. albus-nodulating rhizobia in Tunisian soils. The adapted and efficient rhizobial strains reported here were promising candidates for inoculant development and represent a contribution towards successful cultivation of L. albus in Tunisia, especially the most promising Mekna variety.


Asunto(s)
Lupinus/microbiología , Filogenia , Nodulación de la Raíz de la Planta/genética , Rhizobium/clasificación , Rhizobium/genética , Microbiología del Suelo , Variación Genética , Lupinus/genética , Lupinus/crecimiento & desarrollo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Suelo/química , Simbiosis/genética , Túnez
13.
Syst Appl Microbiol ; 42(2): 232-239, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30384991

RESUMEN

The aim of this study was to survey the abundance and genetic diversity of legume-nodulating rhizobia (LNR) in the rhizosphere of a salt-tolerant grass, Sporobolus robustus Kunth, in the dry and rainy seasons along a salinity gradient, and to test their effectiveness on Prosopis juliflora (SW.) DC and Vachellia seyal (Del.) P.J.H. Hurter seedlings. The results showed a significant decrease in LNR population density and diversity in response to salinity, particularly during the dry season. A phylogenetic analysis of the 16S-23S rRNA ITS region clustered the 232 rhizobium isolates into three genera and 12 distinct representative genotypes: Mesorhizobium (8 genotypes), Ensifer (2 genotypes) and Rhizobium (2 genotypes). Of these genotypes, 2 were only found in the dry season, 4 exclusively in the rainy season and 6 were found in both seasons. Isolates of the Mesorhizobium and Ensifer genera were more abundant than those of Rhizobium, with 55%, 44% and 1% of the total strains, respectively. The abundance of the Mesorhizobium isolates appeared to increase in the dry season, suggesting that they were more adapted to environmental aridity than Ensifer genospecies. Conversely, Ensifer genospecies were more tolerant of high salinity levels than the other genospecies. However, Ensifer genospeciesproved to be the most efficient strains on P. juliflora and V. seyal seedlings. We concluded that S. robustus hosts efficient rhizobium strains in its rhizosphere, suggesting its ability to act as a nurse plant to facilitate seedling recruitment of P. juliflora and V. seyal in saline soils.


Asunto(s)
Fabaceae/microbiología , Filogenia , Poaceae/microbiología , Prosopis/microbiología , Rhizobium/clasificación , Rizosfera , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Nódulos de las Raíces de las Plantas/microbiología , Plantas Tolerantes a la Sal/microbiología , Plantones/microbiología , Senegal , Análisis de Secuencia de ADN , Microbiología del Suelo
14.
Syst Appl Microbiol ; 41(5): 452-459, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29891104

RESUMEN

Fifty-two slow-growing strains were isolated from root nodules of Calicotome spinosa grown in the Northeast of Algeria and grouped in 24 rep-PCR clusters. One representative strain for each profile was further phylogenetically characterized. The nearly complete 16S rRNA gene sequence indicated that all strains were affiliated to Bradyrhizobium. Multi-Locus Sequence Analysis (MLSA) of the atpD, glnII and recA genes and of the 16S-23S rRNA internal transcribed spacer (ITS) showed that these strains formed four divergent clusters: one close to Bradyrhizobium canariense and Bradyrhizobium lupini and three others separate from all the described species, representing three putative new Bradyrhizobium species. A phylogenetic analysis based on the nodC gene sequence affiliated the strains to either of the two symbiovars, genistearum or retamae.


Asunto(s)
Biodiversidad , Bradyrhizobium/clasificación , Fabaceae/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Argelia , Bradyrhizobium/genética , ADN Bacteriano/genética , ADN Ribosómico/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Nodulación de la Raíz de la Planta/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Simbiosis/genética
15.
Plant Methods ; 14: 10, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434651

RESUMEN

BACKGROUND: Genome-wide characterization of tissue- or cell-specific gene expression is a recurrent bottleneck in biology. We have developed a sensitive approach based on ultra-low RNA sequencing coupled to laser assisted microdissection for analyzing different tissues of the small Arabidopsis embryo. METHODS AND RESULTS: We first characterized the number of genes detected according to the quantity of tissue yield and total RNA extracted. Our results revealed that as low as 0.02 mm2 of tissue and 50 pg of total RNA can be used without compromising the number of genes detected. The optimised protocol was used to compare the epidermal versus mesophyll cell transcriptomes of cotyledons at the torpedo-shaped stage of embryo development. The approach was validated by the recovery of well-known epidermal genes such AtML1 or AtPDF2 and genes involved in flavonoid and cuticular waxes pathways. Moreover, the interest and sensitivity of this approach were highlighted by the characterization of several transcription factors preferentially expressed in epidermal cells. CONCLUSION: This technical advance unlocks some current limitations of transcriptomic analyses and allows to investigate further and efficiently new biological questions for which only a very small amounts of cells need to be isolated. For instance, it paves the way to increasing the spatial accuracy of regulatory networks in developing small embryo of Arabidopsis or other plant tissues.

16.
Syst Appl Microbiol ; 41(2): 122-130, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29310897

RESUMEN

Fifty-eight rhizobial strains were isolated from root nodules of Vicia faba cv. Equina and Vicia faba cv. Minor by the host-trapping method in soils collected from eleven sites in Bejaia, Eastern Algeria. Eleven genotypic groups were distinguished based on the combined PCR/RFLP of 16S rRNA, 16S-23S rRNA intergenic spacer and symbiotic (nodC and nodD-F) genes and further confirmed by multilocus sequence analysis (MLSA) of three housekeeping genes (recA, atpD and rpoB), the 16S rRNA gene and the nodulation genes nodC and nodD. Of the 11 genotypes, 5 were dominant and 2 were the most represented. Most of the strains shared high nodD gene sequence similarity with Rhizobium leguminosarum sv. viciae; their nodC sequences were similar to both Rhizobium leguminosarum and Rhizobium laguerreae. Sequence analyses of the 16S-23S rRNA intergenic spacer showed that all the new strains were phylogenetically related to those described from Vicia sativa and V. faba in several African, European, American and Asian countries, with which they form a group related to Rhizobium leguminosarum. Phylogenetic analysis based on MLSA of 16S rRNA, recA, atpD and rpoB genes allowed the affiliations of strain AM11R to Rhizobium leguminosarum sv. viciae and of strains EB1 and ES8 to Rhizobium laguerreae. In addition, two separate clades with <97% similarity may represent two novel genospecies within the genus Rhizobium.


Asunto(s)
Filogenia , Rhizobium leguminosarum/clasificación , Rhizobium/clasificación , Vicia faba/microbiología , Argelia , ADN Bacteriano/genética , ADN Espaciador Ribosómico/genética , Genes Bacterianos , Tipificación de Secuencias Multilocus , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Rhizobium/genética , Rhizobium/aislamiento & purificación , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/aislamiento & purificación , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Simbiosis
17.
Front Plant Sci ; 7: 1364, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695462

RESUMEN

Cropping systems based on carefully designed species mixtures reveal many potential advantages in terms of enhancing crop productivity, reducing pest and diseases, and enhancing ecological services. Associating cereals and legume production either through intercropping or rotations might be a relevant strategy of producing both type of culture, while benefiting from combined nitrogen fixed by the legume through its symbiotic association with nitrogen-fixing bacteria, and from a better use of P and water through mycorrhizal associations. These practices also participate to the diversification of agricultural productions, enabling to secure the regularity of income returns across the seasonal and climatic uncertainties. In this context, we designed a field experiment aiming to estimate the 2 years impact of these practices on wheat yield and on soil microbial activities as estimated through Substrate Induced Respiration method and mycorrhizal soil infectivity (MSI) measurement. It is expected that understanding soil microbial functionalities in response to these agricultural practices might allows to target the best type of combination, in regard to crop productivity. We found that the tested cropping systems largely impacted soil microbial functionalities and MSI. Intercropping gave better results in terms of crop productivity than the rotation practice after two cropping seasons. Benefits resulting from intercrop should be highly linked with changes recorded on soil microbial functionalities.

18.
Springerplus ; 5(1): 1085, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27468385

RESUMEN

BACKGROUND: This work aimed at characterizing 12 isolates of the genus Tuber including Tuber melanosporum (11 isolates) and Tuber brumale (one isolate). This was done using internal transcribed spacer (ITS) sequences, confirming their origin. RESULTS: Analysis of their mating type revealed that both MAT1-1 and MAT1-2 exist within these isolates (with 3 and 8 of each, respectively). We observed that each of these cultures was consistently associated with one bacterium that was intimately linked to fungal growth. These bacterial associates failed to grow in the absence of fungus. We extracted DNA from bacterial colonies in the margin of mycelium and sequenced a nearly complete 16S rDNA gene and a partial ITS fragment. We found they all belonged to the genus Rhodopseudomonas, fitting within different phylogenetic clusters. No relationships were evidenced between bacterial and fungal strains or mating types. Rhodopseudomonas being a sister genus to Bradyrhizobium, we tested the nodulation ability of these bacteria on a promiscuously nodulating legume (Acacia mangium), without success. We failed to identify any nifH genes among these isolates, using two different sets of primers. CONCLUSIONS: While the mechanisms of interaction between Tuber and Rhodopseudomonas remain to be elucidated, their interdependency for in vitro growth seems a novel feature of this fungus.

19.
Braz. j. microbiol ; Braz. j. microbiol;47(2): 314-321, Apr.-June 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-780839

RESUMEN

Abstract Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s) presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981) and the lowest in the area that was replanted most recently (2006).


Asunto(s)
Microbiología del Suelo , Bacterias/aislamiento & purificación , Filogenia , Plantas/microbiología , Suelo/química , Bacterias/clasificación , Bacterias/genética , Óxido de Aluminio/análisis , Minería
20.
Braz J Microbiol ; 47(2): 314-21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26991294

RESUMEN

Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s) presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981) and the lowest in the area that was replanted most recently (2006).


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología del Suelo , Óxido de Aluminio/análisis , Bacterias/clasificación , Bacterias/genética , Minería , Filogenia , Plantas/microbiología , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...