Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837425

RESUMEN

The afila (af) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea - Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown. Here, we combine comparative genomics with reverse genetic approaches to elucidate the genetic determinants of af. We also investigate haplotype diversity using a set of AfAf and afaf cultivars and breeding lines and molecular markers linked to seven consecutive genes. Our results show that deletion of two tandemly arranged genes encoding Q-type Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, is responsible for the af phenotype in pea. Eight haplotypes were identified in the af-harbouring genomic region on chromosome 2. These haplotypes differ in the size of the deletion, covering more or less genes. Diversity at the af locus is valuable for crop improvement and sheds light on the history of pea breeding for improved standing ability. The results will be used to understand the function of PsPALM1a/b and to transfer the knowledge for innovation in related crops.

2.
J Exp Bot ; 74(11): 3276-3285, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36946623

RESUMEN

Improving and stabilizing the quality of seed proteins are of growing interest in the current food and agroecological transitions. Sulfur is a key determinant of this quality since it is essential for the synthesis of sulfur-rich proteins in seeds. A lack of sulfur provokes drastic changes in seed protein composition, negatively impacting the nutritional and functional properties of proteins, and leading in some cases to diseases or health problems in humans. Sulfur also plays a crucial role in stress tolerance through the synthesis of antioxidant or protective molecules. In the context of climate change, questions arise regarding the trade-off between seed yield and seed quality with respect to sulfur availability and use by crops that represent important sources of proteins for human nutrition. Here, we review recent work obtained in legumes, cereals, as well as in Arabidopsis, that present major advances on: (i) the interaction between sulfur nutrition and environmental or nutritional stresses with regard to seed yield and protein composition; (ii) metabolic pathways that merit to be targeted to mitigate negative impacts of environmental stresses on seed protein quality; and (iii) the importance of sulfur homeostasis for the regulation of seed protein composition and its interplay with seed redox homeostasis.


Asunto(s)
Arabidopsis , Semillas , Humanos , Semillas/metabolismo , Grano Comestible/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Azufre/metabolismo , Estrés Fisiológico
3.
J Exp Bot ; 74(1): 194-213, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36197099

RESUMEN

Medicago truncatula NODULE ROOT1 (MtNOOT1) and Pisum sativum COCHLEATA1 (PsCOCH1) are orthologous genes belonging to the NOOT-BOP-COCH-LIKE (NBCL) gene family which encodes key transcriptional co-regulators of plant development. In Mtnoot1 and Pscoch1 mutants, the development of stipules, flowers, and symbiotic nodules is altered. MtNOOT2 and PsCOCH2 represent the single paralogues of MtNOOT1 and PsCOCH1, respectively. In M. truncatula, MtNOOT1 and MtNOOT2 are both required for the establishment and maintenance of symbiotic nodule identity. In legumes, the role of NBCL2 in above-ground development is not known. To better understand the roles of NBCL genes in legumes, we used M. truncatula and P. sativum nbcl mutants, isolated a knockout mutant for the PsCOCH2 locus and generated Pscoch1coch2 double mutants in P. sativum. Our work shows that single Mtnoot2 and Pscoch2 mutants develop wild-type stipules, flowers, and symbiotic nodules. However, the number of flowers was increased and the pods and seeds were smaller compared to the wild type. Furthermore, in comparison to the corresponding nbcl1 single mutants, both the M. truncatula and P. sativum nbcl double mutants show a drastic alteration in stipule, inflorescence, flower, and nodule development. Remarkably, in both M. truncatula and P. sativum nbcl double mutants, stipules are transformed into a range of aberrant leaf-like structures.


Asunto(s)
Medicago truncatula , Nódulos de las Raíces de las Plantas , Nódulos de las Raíces de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pisum sativum/genética , Medicago truncatula/metabolismo , Simbiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fijación del Nitrógeno/genética , Mutación
4.
Commun Biol ; 5(1): 126, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149763

RESUMEN

KAI2 proteins are plant α/ß hydrolase receptors which perceive smoke-derived butenolide signals and endogenous, yet unidentified KAI2-ligands (KLs). The number of functional KAI2 receptors varies among species and KAI2 gene duplication and sub-functionalization likely plays an adaptative role by altering specificity towards different KLs. Legumes represent one of the largest families of flowering plants and contain many agronomic crops. Prior to their diversification, KAI2 underwent duplication resulting in KAI2A and KAI2B. Here we demonstrate that Pisum sativum KAI2A and KAI2B are active receptors and enzymes with divergent ligand stereoselectivity. KAI2B has a higher affinity for and hydrolyses a broader range of substrates including strigolactone-like stereoisomers. We determine the crystal structures of PsKAI2B in apo and butenolide-bound states. The biochemical, structural, and mass spectra analyses of KAI2s reveal a transient intermediate on the catalytic serine and a stable adduct on the catalytic histidine, confirming its role as a bona fide enzyme. Our work uncovers the stereoselectivity of ligand perception and catalysis by diverged KAI2 receptors and proposes adaptive sensitivity to KAR/KL and strigolactones by KAI2B.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catálisis , Pisum sativum/genética , Pisum sativum/metabolismo , Percepción , Reguladores del Crecimiento de las Plantas/genética
5.
Plant Cell Physiol ; 62(5): 784-797, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33826728

RESUMEN

The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes that can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this article, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions IN Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (ß-amyrin synthase1), which is highly expressed in maturing pea seeds and which encodes a protein previously shown to correspond to an active ß-amyrin synthase. The first allele is a nonsense mutation, while the second mutation is located in a splice site and gives rise to a mis-spliced transcript encoding a truncated, nonfunctional protein. The homozygous mutant seeds accumulated virtually no saponin without affecting the seed nutritional or physiological quality. Interestingly, BAS1 appears to control saponin accumulation in all other tissues of the plant examined. These lines represent a first step in the development of pea varieties lacking bitterness off-flavors in their seeds. Our work also shows that TILLING populations in different genetic backgrounds represent valuable genetic resources for both crop improvement and functional genomics.


Asunto(s)
Transferasas Intramoleculares/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Saponinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Mutación con Pérdida de Función , Pisum sativum/genética , Proteínas de Plantas/genética , Saponinas/química , Saponinas/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Análisis Espacio-Temporal
6.
Plant J ; 106(5): 1298-1311, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33733554

RESUMEN

As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for determining this plasticity. This list was enriched in genes related to transcription, DNA repair and signal transduction, with many of them being stress responsive. Other over-represented genes were related to sulfur and aspartate family pathways leading to the synthesis of the nutritionally essential amino acids methionine and lysine. By placing these genes in metabolic pathways, and using a M. truncatula mutant impaired in regenerating methionine from S-methylmethionine, we discovered that methionine recycling pathways are major contributors to globulin composition establishment and plasticity. These data provide a unique resource of genes that can be targeted to mitigate negative impacts of environmental stresses on seed protein composition.


Asunto(s)
Medicago truncatula/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Estudio de Asociación del Genoma Completo , Genotipo , Globulinas/genética , Globulinas/metabolismo , Medicago truncatula/fisiología , Metionina/metabolismo , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Vitamina U/metabolismo
7.
Sci Rep ; 11(1): 4224, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608604

RESUMEN

Grain legumes are highly valuable plant species, as they produce seeds with high protein content. Increasing seed protein production and improving seed nutritional quality represent an agronomical challenge in order to promote plant protein consumption of a growing population. In this study, we used the genetic diversity, naturally present in Medicago truncatula, a model plant for legumes, to identify genes/loci regulating seed traits. Indeed, using sequencing data of 162 accessions from the Medicago HAPMAP collection, we performed genome-wide association study for 32 seed traits related to seed size and seed composition such as seed protein content/concentration, sulfur content/concentration. Using different GWAS and postGWAS methods, we identified 79 quantitative trait nucleotides (QTNs) as regulating seed size, 41 QTNs for seed composition related to nitrogen (i.e. storage protein) and sulfur (i.e. sulfur-containing amino acid) concentrations/contents. Furthermore, a strong positive correlation between seed size and protein content was revealed within the selected Medicago HAPMAP collection. In addition, several QTNs showed highly significant associations in different seed phenotypes for further functional validation studies, including one near an RNA-Binding Domain protein, which represents a valuable candidate as central regulator determining both seed size and composition. Finally, our findings in M. truncatula represent valuable resources to be exploitable in many legume crop species such as pea, common bean, and soybean due to its high synteny, which enable rapid transfer of these results into breeding programs and eventually help the improvement of legume grain production.


Asunto(s)
Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Medicago truncatula/genética , Carácter Cuantitativo Heredable , Semillas/anatomía & histología , Semillas/genética , Algoritmos , Biología Computacional/métodos , Grano Comestible , Ontología de Genes , Geografía , Fenotipo , Sitios de Carácter Cuantitativo , Semillas/química
8.
J Exp Bot ; 72(7): 2611-2626, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33558872

RESUMEN

Pea is a legume crop producing protein-rich seeds and is increasingly in demand for human consumption and animal feed. The aim of this study was to explore the proteome of developing pea seeds at three key stages covering embryogenesis, the transition to seed-filling, and the beginning of storage-protein synthesis, and to investigate how the proteome was influenced by S deficiency and water stress, applied either separately or combined. Of the 3184 proteins quantified by shotgun proteomics, 2473 accumulated at particular stages, thus providing insights into the proteome dynamics at these stages. Differential analyses in response to the stresses and inference of a protein network using the whole proteomics dataset identified a cluster of antioxidant proteins (including a glutathione S-transferase, a methionine sulfoxide reductase, and a thioredoxin) possibly involved in maintaining redox homeostasis during early seed development and preventing cellular damage under stress conditions. Integration of the proteomics data with previously obtained transcriptomics data at the transition to seed-filling revealed the transcriptional events associated with the accumulation of the stress-regulated antioxidant proteins. This transcriptional defense response involves genes of sulfate homeostasis and assimilation, thus providing candidates for targeted studies aimed at dissecting the signaling cascade linking S metabolism to antioxidant processes in developing seeds.


Asunto(s)
Pisum sativum , Proteómica , Antioxidantes , Deshidratación , Regulación de la Expresión Génica de las Plantas , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Azufre/metabolismo
9.
Algorithms Mol Biol ; 15: 13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625242

RESUMEN

MOTIVATION: Association studies have been widely used to search for associations between common genetic variants observations and a given phenotype. However, it is now generally accepted that genes and environment must be examined jointly when estimating phenotypic variance. In this work we consider two types of biological markers: genotypic markers, which characterize an observation in terms of inherited genetic information, and metagenomic marker which are related to the environment. Both types of markers are available in their millions and can be used to characterize any observation uniquely. OBJECTIVE: Our focus is on detecting interactions between groups of genetic and metagenomic markers in order to gain a better understanding of the complex relationship between environment and genome in the expression of a given phenotype. CONTRIBUTIONS: We propose a novel approach for efficiently detecting interactions between complementary datasets in a high-dimensional setting with a reduced computational cost. The method, named SICOMORE, reduces the dimension of the search space by selecting a subset of supervariables in the two complementary datasets. These supervariables are given by a weighted group structure defined on sets of variables at different scales. A Lasso selection is then applied on each type of supervariable to obtain a subset of potential interactions that will be explored via linear model testing. RESULTS: We compare SICOMORE with other approaches in simulations, with varying sample sizes, noise, and numbers of true interactions. SICOMORE exhibits convincing results in terms of recall, as well as competitive performances with respect to running time. The method is also used to detect interaction between genomic markers in Medicago truncatula and metagenomic markers in its rhizosphere bacterial community. SOFTWARE AVAILABILITY: An R package is available [4], along with its documentation and associated scripts, allowing the reader to reproduce the results presented in the paper.

10.
Plant Physiol ; 183(3): 1319-1330, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376762

RESUMEN

Nitrogen-fixing root nodulation in legumes challenged with nitrogen-limiting conditions requires infection of the root hairs by soil symbiotic bacteria, collectively referred to as rhizobia, and the initiation of cell divisions in the root cortex. Cytokinin hormones are critical for early nodulation to coordinate root nodule organogenesis and the progression of bacterial infections. Cytokinin signaling involves regulation of the expression of cytokinin primary response genes by type-B response regulator (RRB) transcription factors. RNA interference or mutation of MtRRB3, the RRB-encoding gene most strongly expressed in Medicago truncatula roots and nodules, significantly decreased the number of nodules formed, indicating a function of this RRB in nodulation initiation. Fewer infection events were also observed in rrb3 mutant roots associated with a reduced Nod factor induction of the Early Nodulin 11 (MtENOD11) infection marker, and of the cytokinin-regulated Nodulation Signaling Pathway 2 (Mt NSP2) gene. Rhizobial infections correlate with an expansion of the nuclear area, suggesting the activation of endoreduplication cycles linked to the cytokinin-regulated Cell Cycle Switch 52A (Mt CCS52A) gene. Although no significant difference in nucleus size and endoreduplication were detected in rhizobia-infected rrb3 mutant roots, expression of the MtCCS52A endoreduplication marker was reduced. As the MtRRB3 expression pattern overlaps with those of MtNSP2 and MtCCS52A in roots and nodule primordia, chromatin immunoprecipitation-quantitative PCR and protoplast trans-activation assays were used to show that MtRRB3 can interact with and trans-activate MtNSP2 and MtCCS52A promoters. Overall, we highlight that the MtRRB3 cytokinin signaling transcription factor coordinates the expression of key early nodulation genes.


Asunto(s)
Citocininas/metabolismo , Nodulación de la Raíz de la Planta , Transducción de Señal , Factores de Transcripción/metabolismo , Tamaño del Núcleo Celular , Endorreduplicación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/microbiología , Fenotipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Sinorhizobium meliloti/fisiología , Activación Transcripcional/genética
11.
Front Plant Sci ; 10: 1014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31440268

RESUMEN

Pea (Pisum sativum L.) is an important source of dietary proteins. Nutrient recycling from leaves contributes to the accumulation of seed proteins and is a pivotal determinant of protein yields in this grain legume. The aim of this study was to unveil the transcriptional regulations occurring in pea leaves before the sharp decrease in chlorophyll breakdown. As a prelude to this study, a time-series analysis of 15N translocation at the whole plant level was performed, which indicated that nitrogen recycling among organs was highly dynamic during this period and varied depending on nitrate availability. Leaves collected on vegetative and reproductive nodes were further analyzed by transcriptomics. The data revealed extensive transcriptome changes in leaves of reproductive nodes during early seed development (from flowering to 14 days after flowering), including an up-regulation of genes encoding transporters, and particularly of sulfate that might sustain sulfur metabolism in leaves of the reproductive part. This developmental period was also characterized by a down-regulation of cell wall-associated genes in leaves of both reproductive and vegetative nodes, reflecting a shift in cell wall structure. Later on, 27 days after flowering, genes potentially switching the metabolism of leaves toward senescence were pinpointed, some of which are related to ribosomal RNA processing, autophagy, or transport systems. Transcription factors differentially regulated in leaves between stages were identified and a gene co-expression network pointed out some of them as potential regulators of the above-mentioned biological processes. The same approach was conducted in Medicago truncatula to identify shared regulations with this wild legume species. Altogether the results give a global view of transcriptional events in leaves of legumes at early reproductive stages and provide a valuable resource of candidate genes that could be targeted by reverse genetics to improve nutrient remobilization and/or delay catabolic processes leading to senescence.

12.
New Phytol ; 223(3): 1516-1529, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31058335

RESUMEN

Plant -specific lysin-motif receptor-like kinases (LysM-RLKs) are implicated in the perception of N-acetyl glucosamine-containing compounds, some of which are important signal molecules in plant-microbe interactions. Among these, both lipo-chitooligosaccharides (LCOs) and chitooligosaccharides (COs) are proposed as arbuscular mycorrhizal (AM) fungal symbiotic signals. COs can also activate plant defence, although there are scarce data about CO production by pathogens, especially nonfungal pathogens. We tested Medicago truncatula mutants in the LysM-RLK MtLYK9 for their abilities to interact with the AM fungus Rhizophagus irregularis and the oomycete pathogen Aphanomyces euteiches. This prompted us to analyse whether A. euteiches can produce COs. Compared with wild-type plants, Mtlyk9 mutants had fewer infection events and were less colonised by the AM fungus. By contrast, Mtlyk9 mutants were more heavily infected by A. euteiches and showed more disease symptoms. Aphanomyces euteiches was also shown to produce short COs, mainly CO II, but also CO III and CO IV, and traces of CO V, both ex planta and in planta. MtLYK9 thus has a dual role in plant immunity and the AM symbiosis, which raises questions about the functioning and the ancestral origins of such a receptor protein.


Asunto(s)
Glomeromycota/fisiología , Medicago truncatula/microbiología , Micorrizas/fisiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Simbiosis , Secuencia de Aminoácidos , Aphanomyces/fisiología , Quitina/análogos & derivados , Quitina/biosíntesis , Quitosano , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Mutación/genética , Oligosacáridos , Proteínas de Plantas/química , Proteínas de Plantas/genética
13.
Planta ; 248(5): 1101-1120, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30043288

RESUMEN

MAIN CONCLUSION: The LysM receptor-like kinase K1 is involved in regulation of pea-rhizobial symbiosis development. The ability of the crop legume Pisum sativum L. to perceive the Nod factor rhizobial signals may depend on several receptors that differ in ligand structure specificity. Identification of pea mutants defective in two types of LysM receptor-like kinases (LysM-RLKs), SYM10 and SYM37, featuring different phenotypic manifestations and impaired at various stages of symbiosis development, corresponds well to this assumption. There is evidence that one of the receptor proteins involved in symbiosis initiation, SYM10, has an inactive kinase domain. This implies the presence of an additional component in the receptor complex, together with SYM10, that remains unknown. Here, we describe a new LysM-RLK, K1, which may serve as an additional component of the receptor complex in pea. To verify the function of K1 in symbiosis, several P. sativum non-nodulating mutants in the k1 gene were identified using the TILLING approach. Phenotyping revealed the blocking of symbiosis development at an appropriately early stage, strongly suggesting the importance of LysM-RLK K1 for symbiosis initiation. Moreover, the analysis of pea mutants with weaker phenotypes provides evidence for the additional role of K1 in infection thread distribution in the cortex and rhizobia penetration. The interaction between K1 and SYM10 was detected using transient leaf expression in Nicotiana benthamiana and in the yeast two-hybrid system. Since the possibility of SYM10/SYM37 complex formation was also shown, we tested whether the SYM37 and K1 receptors are functionally interchangeable using a complementation test. The interaction between K1 and other receptors is discussed.


Asunto(s)
Pisum sativum/enzimología , Proteínas de Plantas/fisiología , Proteínas Quinasas/fisiología , Rhizobium leguminosarum/fisiología , Simbiosis , Western Blotting , Ingeniería Genética/métodos , Pisum sativum/microbiología , Pisum sativum/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana/genética , Técnicas del Sistema de Dos Híbridos
14.
Methods Mol Biol ; 1822: 71-82, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30043297

RESUMEN

TILLING is a reverse genetics strategy that combines the high density of point mutations provided by traditional chemical mutagenesis with rapid screening of DNA pools from a mutagenized population for induced mutations (McCallum et al., Nat Biotechnol 18:455-457, 2000). This high-throughput technique allows the identification of point mutations in any gene of interest.


Asunto(s)
Genoma de Planta , Genómica , Medicago truncatula/genética , Metanosulfonato de Etilo/farmacología , Genómica/métodos , Medicago truncatula/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Técnicas de Amplificación de Ácido Nucleico , Fenotipo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Semillas/efectos de los fármacos , Semillas/genética
15.
Methods Mol Biol ; 1822: 175-195, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30043305

RESUMEN

The study of seed development in the model species Medicago truncatula has made a significant contribution to our understanding of this process in crop legumes. Thanks to the availability of comprehensive proteomics and transcriptomics databases, coupled with exhaustive mutant collections, the roles of several regulatory genes in development and maturation are beginning to be deciphered and functionally validated. Advances in next-generation sequencing and the availability of a genomic sequence have made feasible high-density SNP genotyping, allowing the identification of markers tightly linked to traits of agronomic interest. A further major advance is to be expected from the integration of omics resources in functional network construction, which has been used recently to identify "hub" genes central to important traits.


Asunto(s)
Genoma de Planta , Genómica , Medicago truncatula/genética , Desarrollo de la Planta/genética , Semillas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Medicago truncatula/metabolismo , Mutación , Fenómenos Fisiológicos de las Plantas , Proteómica , Reproducibilidad de los Resultados , Transcriptoma
16.
New Phytol ; 214(4): 1597-1613, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28322451

RESUMEN

Improving nutritional seed quality is an important challenge in grain legume breeding. However, the genes controlling the differential accumulation of globulins, which are major contributors to seed nutritional value in legumes, remain largely unknown. We combined a search for protein quantity loci with genome-wide association studies on the abundance of 7S and 11S globulins in seeds of the model legume species Medicago truncatula. Identified genomic regions and genes carrying polymorphisms linked to globulin variations were then cross-compared with pea (Pisum sativum), leading to the identification of candidate genes for the regulation of globulin abundance in this crop. Key candidates identified include genes involved in transcription, chromatin remodeling, post-translational modifications, transport and targeting of proteins to storage vacuoles. Inference of a gene coexpression network of 12 candidate transcription factors and globulin genes revealed the transcription factor ABA-insensitive 5 (ABI5) as a highly connected hub. Characterization of loss-of-function abi5 mutants in pea uncovered a role for ABI5 in controlling the relative abundance of vicilin, a sulfur-poor 7S globulin, in pea seeds. This demonstrates the feasibility of using genome-wide association studies in M. truncatula to reveal genes that can be modulated to improve seed nutritional value.


Asunto(s)
Globulinas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Semillas/metabolismo , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Globulinas/genética , Mutación , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Proteómica/métodos , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Plant Physiol ; 170(4): 2312-24, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26839127

RESUMEN

PUB1, an E3 ubiquitin ligase, which interacts with and is phosphorylated by the LYK3 symbiotic receptor kinase, negatively regulates rhizobial infection and nodulation during the nitrogen-fixing root nodule symbiosis in Medicago truncatula In this study, we show that PUB1 also interacts with and is phosphorylated by DOES NOT MAKE INFECTIONS 2, the key symbiotic receptor kinase of the common symbiosis signaling pathway, required for both the rhizobial and the arbuscular mycorrhizal (AM) endosymbioses. We also show here that PUB1 expression is activated during successive stages of root colonization by Rhizophagus irregularis that is compatible with its interaction with DOES NOT MAKE INFECTIONS 2. Through characterization of a mutant, pub1-1, affected by the E3 ubiquitin ligase activity of PUB1, we have shown that the ubiquitination activity of PUB1 is required to negatively modulate successive stages of infection and development of rhizobial and AM symbioses. In conclusion, PUB1 represents, to our knowledge, a novel common component of symbiotic signaling integrating signal perception through interaction with and phosphorylation by two key symbiotic receptor kinases, and downstream signaling via its ubiquitination activity to fine-tune both rhizobial and AM root endosymbioses.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Rhizobium/fisiología , Simbiosis , Ubiquitinación , Recuento de Colonia Microbiana , Glomeromycota/fisiología , Micorrizas/crecimiento & desarrollo , Fosforilación , Proteínas de Plantas/química , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
18.
Plant Mol Biol ; 89(6): 539-58, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26346777

RESUMEN

Among a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development. Divergence of the two encoded proteins is associated with a loss of similarity in intron/exon gene structure. Transient expression of SGRL in leaves of Nicotiana benthamiana promoted the degradation of chlorophyll, in a manner that was distinct from that shown by SGR. Removal of a predicted transmembrane domain from SGRL reduced its activity in transient expression assays, although variants with and without this domain reduced SGR-induced chlorophyll degradation, indicating that the effects of the two proteins are not additive. The combined data suggest that the function of SGRL during growth and development is in chlorophyll re-cycling, and its mode of action is distinct from that of SGR. Studies of pea sgrL mutants revealed that plants had significantly lower stature and yield, a likely consequence of reduced photosynthetic efficiencies in mutant compared with control plants under conditions of high light intensity.


Asunto(s)
Clorofila/metabolismo , Pisum sativum/crecimiento & desarrollo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Mutación , Pisum sativum/genética , Fotosíntesis/genética , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Nicotiana/genética , Nicotiana/metabolismo
20.
PLoS One ; 10(8): e0134634, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267859

RESUMEN

Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving or abolishing the corresponding inhibitory activity, along with associated molecular markers for breeding programmes. The potential for making large changes to plant protein profiles for improved and sustainable food production through diversity is illustrated. The strategy employed here to reduce anti-nutritional proteins in seeds may be extended to allergens and other seed proteins with negative nutritional effects. Additionally, the novel variants described for pea will assist future studies of the biological role and health-related properties of so-called anti-nutrients.


Asunto(s)
Quimotripsina/química , Pisum sativum/química , Proteínas de Plantas/genética , Inhibidores de Proteasas/química , Secuencia de Aminoácidos , Animales , Quimotripsina/antagonistas & inhibidores , Quimotripsina/genética , Dieta , Humanos , Mutación , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Semillas/química , Semillas/genética , Tripsina/química , Tripsina/genética , Inhibidores de Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA