Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Opin Chem Biol ; 71: 102225, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36368297

RESUMEN

Tracking proteins' biophysical characteristics on a proteome-wide scale can provide valuable information on their functions and interactions. Thermal proteome profiling (TPP) is a multiplexed quantitative proteomics approach that measures changes in protein thermal stability-a key biophysical property-across different cellular states. Developed in 2014, as a target-deconvolution assay for drugs and other small molecules, TPP has since evolved to a system-level biochemical omics technique providing insights into context-dependent changes in protein states. In this review, we summarise key advances in the experimental and data analysis pipeline that have aided this transformation and discuss the recent developments and applications of TPP.


Asunto(s)
Proteoma , Proteómica , Proteoma/metabolismo , Proteómica/métodos , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Unión Proteica
2.
Syst Biol ; 71(5): 1210-1224, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35412638

RESUMEN

Balance indices that quantify the symmetry of branching events and the compactness of trees are widely used to compare evolutionary processes or tree-generating algorithms. Yet, existing indices are not defined for all rooted trees, are unreliable for comparing trees with different numbers of leaves, and are sensitive to the presence or absence of rare types. The contributions of this article are twofold. First, we define a new class of robust, universal tree balance indices. These indices take a form similar to Colless' index but can account for population sizes, are defined for trees with any degree distribution, and enable meaningful comparison of trees with different numbers of leaves. Second, we show that for bifurcating and all other full m-ary cladograms (in which every internal node has the same out-degree), one such Colless-like index is equivalent to the normalized reciprocal of Sackin's index. Hence, we both unify and generalize the two most popular existing tree balance indices. Our indices are intrinsically normalized and can be computed in linear time. We conclude that these more widely applicable indices have the potential to supersede those in current use. [Cancer; clone tree; Colless index; Sackin index; species tree; tree balance.].


Asunto(s)
Algoritmos , Evolución Biológica , Filogenia , Densidad de Población
3.
Nat Ecol Evol ; 6(2): 207-217, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34949822

RESUMEN

Characterizing the mode-the way, manner or pattern-of evolution in tumours is important for clinical forecasting and optimizing cancer treatment. Sequencing studies have inferred various modes, including branching, punctuated and neutral evolution, but it is unclear why a particular pattern predominates in any given tumour. Here we propose that tumour architecture is key to explaining the variety of observed genetic patterns. We examine this hypothesis using spatially explicit population genetics models and demonstrate that, within biologically relevant parameter ranges, different spatial structures can generate four tumour evolutionary modes: rapid clonal expansion, progressive diversification, branching evolution and effectively almost neutral evolution. Quantitative indices for describing and classifying these evolutionary modes are presented. Using these indices, we show that our model predictions are consistent with empirical observations for cancer types with corresponding spatial structures. The manner of cell dispersal and the range of cell-cell interactions are found to be essential factors in accurately characterizing, forecasting and controlling tumour evolution.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética
4.
Blood ; 138(22): 2231-2243, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34407546

RESUMEN

Classical BCR-ABL-negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.


Asunto(s)
Células Madre Hematopoyéticas/efectos de los fármacos , Factores Inmunológicos/uso terapéutico , Interferón-alfa/uso terapéutico , Mutación/efectos de los fármacos , Trastornos Mieloproliferativos/tratamiento farmacológico , Calreticulina/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Factores Inmunológicos/farmacología , Interferón-alfa/farmacología , Janus Quinasa 2/genética , Estudios Longitudinales , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Estudios Prospectivos , Receptores de Trombopoyetina/genética , Células Tumorales Cultivadas
5.
Evol Appl ; 13(7): 1558-1568, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32821272

RESUMEN

The utility of intratumour heterogeneity as a prognostic biomarker is the subject of ongoing clinical investigation. However, the relationship between this marker and its clinical impact is mediated by an evolutionary process that is not well understood. Here, we employ a spatial computational model of tumour evolution to assess when, why and how intratumour heterogeneity can be used to forecast tumour growth rate and progression-free survival. We identify three conditions that can lead to a positive correlation between clonal diversity and subsequent growth rate: diversity is measured early in tumour development; selective sweeps are rare; and/or tumours vary in the rate at which they acquire driver mutations. Opposite conditions typically lead to negative correlation. In cohorts of tumours with diverse evolutionary parameters, we find that clonal diversity is a reliable predictor of both growth rate and progression-free survival. We thus offer explanations-grounded in evolutionary theory-for empirical findings in various cancers, including survival analyses reported in the recent TRACERx Renal study of clear-cell renal cell carcinoma. Our work informs the search for new prognostic biomarkers and contributes to the development of predictive oncology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...