Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
J Proteome Res ; 22(11): 3475-3488, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37847596

RESUMEN

Numerous Aß proteoforms, identified in the human brain, possess differential neurotoxic and aggregation propensities. These proteoforms contribute in unknown ways to the conformations and resultant pathogenicity of oligomers, protofibrils, and fibrils in Alzheimer's disease (AD) manifestation owing to the lack of molecular-level specificity to the exact chemical composition of underlying protein products with widespread interrogating techniques, like immunoassays. We evaluated Aß proteoform flux using quantitative top-down mass spectrometry (TDMS) in a well-studied 5xFAD mouse model of age-dependent Aß-amyloidosis. Though the brain-derived Aß proteoform landscape is largely occupied by Aß1-42, 25 different forms of Aß with differential solubility were identified. These proteoforms fall into three natural groups defined by hierarchical clustering of expression levels in the context of mouse age and proteoform solubility, with each group sharing physiochemical properties associated with either N/C-terminal truncations or both. Overall, the TDMS workflow outlined may hold tremendous potential for investigating proteoform-level relationships between insoluble fibrils and soluble Aß, including low-molecular-weight oligomers hypothesized to serve as the key drivers of neurotoxicity. Similarly, the workflow may also help to validate the utility of AD-relevant animal models to recapitulate amyloidosis mechanisms or possibly explain disconnects observed in therapeutic efficacy in animal models vs humans.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Humanos , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Espectrometría de Masas
4.
Am J Obstet Gynecol ; 228(3): 270-275.e4, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36191605

RESUMEN

The ovaries are the female gonads that are crucial for reproduction, steroid production, and overall health. Historically, the ovary was broadly divided into regions defined as the cortex, medulla, and hilum. This current nomenclature lacks specificity and fails to consider the significant anatomic variations in the ovary. Recent technological advances in imaging modalities and high-resolution omic analyses have brought about the need for revision of the existing definitions, which will facilitate the integration of generated data and enable the characterization of organ subanatomy and function at the cellular level. The creation of these high-resolution multimodal maps of the ovary will enhance collaboration and communication among disciplines and between clinicians and researchers. Beginning in March 2021, the Pediatric and Adolescent Gynecology Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development invited subject-matter experts to participate in a series of workshops and meetings to standardize ovarian nomenclature and define the organ's features. The goal was to develop a spatially defined and semantically consistent terminology of the ovary to support collaborative, team science-based endeavors aimed at generating reference atlases of the human ovary. The group recommended a standardized, 3-dimensional description of the ovary and an ontological approach to the subanatomy of the ovary and definition of follicles. This new greater precision in nomenclature and mapping will better reflect the ovary's heterogeneous composition and function, support the standardization of tissue collection, facilitate functional analyses, and enable clinical and research collaborations. The conceptualization process and outcomes of the effort, which spanned the better part of 2021 and early 2022, are introduced in this article. The institute and the workshop participants encourage researchers and clinicians to adopt the new systems in their everyday work to advance the overarching goal of improving human reproductive health.


Asunto(s)
Ginecología , Ovario , Adolescente , Humanos , Femenino , Niño , Ovario/diagnóstico por imagen , Pelvis
5.
J Am Chem Soc ; 144(50): 23104-23114, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36475650

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors in humans. They mediate nearly all aspects of human physiology and thus are of high therapeutic interest. GPCR signaling is regulated in space and time by receptor phosphorylation. It is believed that different phosphorylation states are possible for a single receptor, and each encodes for unique signaling outcomes. Methods to determine the phosphorylation status of GPCRs are critical for understanding receptor physiology and signaling properties of GPCR ligands and therapeutics. However, common proteomic techniques have provided limited quantitative information regarding total receptor phosphorylation stoichiometry, relative abundances of isomeric modification states, and temporal dynamics of these parameters. Here, we report a novel middle-down proteomic strategy and parallel reaction monitoring (PRM) to quantify the phosphorylation states of the C-terminal tail of metabotropic glutamate receptor 2 (mGluR2). By this approach, we found that mGluR2 is subject to both basal and agonist-induced phosphorylation at up to four simultaneous sites with varying probability. Using a PRM tandem mass spectrometry methodology, we localized the positions and quantified the relative abundance of phosphorylations following treatment with an agonist. Our analysis showed that phosphorylation within specific regions of the C-terminal tail of mGluR2 is sensitive to receptor activation, and subsequent site-directed mutagenesis of these sites identified key regions which tune receptor sensitivity. This study demonstrates that middle-down purification followed by label-free quantification is a powerful, quantitative, and accessible tool for characterizing phosphorylation states of GPCRs and other challenging proteins.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Humanos , Receptores Acoplados a Proteínas G/química , Fosforilación , Transducción de Señal/fisiología , Ligandos , Proteómica , Espectrometría de Masas , Proteínas Portadoras/metabolismo
6.
J Proteome Res ; 21(4): 1189-1195, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35290070

RESUMEN

It is important for the proteomics community to have a standardized manner to represent all possible variations of a protein or peptide primary sequence, including natural, chemically induced, and artifactual modifications. The Human Proteome Organization Proteomics Standards Initiative in collaboration with several members of the Consortium for Top-Down Proteomics (CTDP) has developed a standard notation called ProForma 2.0, which is a substantial extension of the original ProForma notation developed by the CTDP. ProForma 2.0 aims to unify the representation of proteoforms and peptidoforms. ProForma 2.0 supports use cases needed for bottom-up and middle-/top-down proteomics approaches and allows the encoding of highly modified proteins and peptides using a human- and machine-readable string. ProForma 2.0 can be used to represent protein modifications in a specified or ambiguous location, designated by mass shifts, chemical formulas, or controlled vocabulary terms, including cross-links (natural and chemical) and atomic isotopes. Notational conventions are based on public controlled vocabularies and ontologies. The most up-to-date full specification document and information about software implementations are available at http://psidev.info/proforma.


Asunto(s)
Proteoma , Proteómica , Humanos , Procesamiento Proteico-Postraduccional , Proteoma/genética , Estándares de Referencia , Programas Informáticos
7.
Proteomics ; 22(11-12): e2100209, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35286768

RESUMEN

The effectiveness of any proteomics database search depends on the theoretical candidate information contained in the protein database. Unfortunately, candidate entries from protein databases such as UniProt rarely contain all the post-translational modifications (PTMs), disulfide bonds, or endogenous cleavages of interest to researchers. These omissions can limit discovery of novel and biologically important proteoforms. Conversely, searching for a specific proteoform becomes a computationally difficult task for heavily modified proteins. Both situations require updates to the database through user-annotated entries. Unfortunately, manually creating properly formatted UniProt Extensible Markup Language (XML) files is tedious and prone to errors. ProSight Annotator solves these issues by providing a graphical interface for adding user-defined features to UniProt-formatted XML files for better informed proteoform searches. It can be downloaded from http://prosightannotator.northwestern.edu.


Asunto(s)
Lenguaje , Proteínas , Bases de Datos de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteómica , Programas Informáticos
8.
Science ; 375(6579): 411-418, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084980

RESUMEN

Human biology is tightly linked to proteins, yet most measurements do not precisely determine alternatively spliced sequences or posttranslational modifications. Here, we present the primary structures of ~30,000 unique proteoforms, nearly 10 times more than in previous studies, expressed from 1690 human genes across 21 cell types and plasma from human blood and bone marrow. The results, compiled in the Blood Proteoform Atlas (BPA), indicate that proteoforms better describe protein-level biology and are more specific indicators of differentiation than their corresponding proteins, which are more broadly expressed across cell types. We demonstrate the potential for clinical application, by interrogating the BPA in the context of liver transplantation and identifying cell and proteoform signatures that distinguish normal graft function from acute rejection and other causes of graft dysfunction.


Asunto(s)
Células Sanguíneas/química , Proteínas Sanguíneas/química , Células de la Médula Ósea/química , Bases de Datos de Proteínas , Isoformas de Proteínas/química , Proteoma/química , Empalme Alternativo , Linfocitos B/química , Proteínas Sanguíneas/genética , Linaje de la Célula , Humanos , Leucocitos Mononucleares/química , Trasplante de Hígado , Plasma/química , Isoformas de Proteínas/genética , Procesamiento Proteico-Postraduccional , Proteómica , Linfocitos T/química
9.
Nucleic Acids Res ; 50(D1): D526-D533, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34986596

RESUMEN

The Human Proteoform Atlas (HPfA) is a web-based repository of experimentally verified human proteoforms on-line at http://human-proteoform-atlas.org and is a direct descendant of the Consortium of Top-Down Proteomics' (CTDP) Proteoform Atlas. Proteoforms are the specific forms of protein molecules expressed by our cells and include the unique combination of post-translational modifications (PTMs), alternative splicing and other sources of variation deriving from a specific gene. The HPfA uses a FAIR system to assign persistent identifiers to proteoforms which allows for redundancy calling and tracking from prior and future studies in the growing community of proteoform biology and measurement. The HPfA is organized around open ontologies and enables flexible classification of proteoforms. To achieve this, a public registry of experimentally verified proteoforms was also created. Submission of new proteoforms can be processed through email vianrtdphelp@northwestern.edu, and future iterations of these proteoform atlases will help to organize and assign function to proteoforms, their PTMs and their complexes in the years ahead.


Asunto(s)
Empalme Alternativo , Bases de Datos de Proteínas , Procesamiento Proteico-Postraduccional , Proteoma/química , Proteínas Proto-Oncogénicas p21(ras)/química , Interfaz Usuario-Computador , Secuencia de Aminoácidos , Atlas como Asunto , Ontología de Genes , Humanos , Modelos Moleculares , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/clasificación , Proteoma/genética , Proteoma/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
J Proteome Res ; 21(1): 274-288, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34878788

RESUMEN

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multiparametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We applied Ig-MS to plasma from subjects with severe and mild COVID-19 and immunized subjects after two vaccine doses, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, that could use other antigens of interest to gauge immune responses to vaccination, pathogens, or autoimmune disorders.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Espectrometría de Masas , Glicoproteína de la Espiga del Coronavirus/genética
11.
medRxiv ; 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34268518

RESUMEN

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS , a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multi-parametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We apply Ig-MS to plasma from subjects with severe & mild COVID-19, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, with compatibility to any recombinant antigen to gauge our immune responses to vaccination, pathogens, or autoimmune disorders.

12.
J Am Soc Mass Spectrom ; 31(7): 1398-1409, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32436704

RESUMEN

Protein fragmentation is a critical component of top-down proteomics, enabling gene-specific protein identification and full proteoform characterization. The factors that influence protein fragmentation include precursor charge, structure, and primary sequence, which have been explored extensively for collision-induced dissociation (CID). Recently, noticeable differences in CID-based fragmentation were reported for native versus denatured proteins, motivating the need for scoring metrics that are tailored specifically to native top-down mass spectrometry (nTDMS). To this end, position and intensity were tracked for 10,252 fragment ions produced by higher-energy collisional dissociation (HCD) of 159 native monomers and 70 complexes. We used published structural data to explore the relationship between fragmentation and protein topology and revealed that fragmentation events occur at a large range of relative residue solvent accessibility. Additionally, our analysis found that fragment ions at sites with an N-terminal aspartic acid or a C-terminal proline make up on average 40 and 27%, respectively, of the total matched fragment ion intensity in nTDMS. Percent intensity contributed by each amino acid was determined and converted into weights to (1) update the previously published C-score and (2) construct a native Fragmentation Propensity Score. Both scoring systems showed an improvement in protein identification or characterization in comparison to traditional methods and overall increased confidence in results with fewer matched fragment ions but with high probability nTDMS fragmentation patterns. Given the rise of nTDMS as a tool for structural mass spectrometry, we forward these scoring metrics as new methods to enhance analysis of nTDMS data.


Asunto(s)
Iones , Proteoma , Proteómica/métodos , Animales , Línea Celular , Bases de Datos de Proteínas , Humanos , Iones/análisis , Iones/química , Espectrometría de Masas , Ratones , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Proteoma/análisis , Proteoma/química
13.
Sci Rep ; 9(1): 20001, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882863

RESUMEN

Premature ovarian insufficiency (POI) affects approximately 1% of women. We aim to understand the ovarian microenvironment, including the extracellular matrix (ECM) and associated proteins (matrisome), and its role in controlling folliculogenesis. We mapped the composition of the matrisome of porcine ovaries through the cortical compartment, where quiescent follicles reside and the medullary compartment, where the larger follicles grow and mature. To do this we sliced the ovaries, uniformly in two anatomical planes, enriched for matrisome proteins and performed bottom-up shotgun proteomic analyses. We identified 42 matrisome proteins that were significantly differentially expressed across depths, and 11 matrisome proteins that have not been identified in previous ovarian protein analyses. We validated these data for nine proteins and confirmed compartmental differences with a second processing method. Here we describe a processing and proteomic analysis pipeline that revealed spatial differences and matrisome protein candidates that may influence folliculogenesis.


Asunto(s)
Compartimento Celular , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Proteómica/métodos , Animales , Cromatografía Liquida/métodos , Femenino , Reacción en Cadena de la Polimerasa/métodos , Insuficiencia Ovárica Primaria/metabolismo , Porcinos , Espectrometría de Masas en Tándem/métodos
14.
J Proteome Res ; 18(11): 3999-4012, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31550894

RESUMEN

Cocaine addiction afflicts nearly 1 million adults in the United States, and to date, there are no known treatments approved for this psychiatric condition. Women are particularly vulnerable to developing a cocaine use disorder and suffer from more serious cardiac consequences than men when using cocaine. Estrogen is one biological factor contributing to the increased risk for females to develop problematic cocaine use. Animal studies have demonstrated that estrogen (17ß-estradiol or E2) enhances the rewarding properties of cocaine. Although E2 affects the dopamine system, the molecular and cellular mechanisms of E2-enhanced cocaine reward have not been characterized. In this study, quantitative top-down proteomics was used to measure intact proteins in specific regions of the female mouse brain after mice were trained for cocaine-conditioned place preference, a behavioral test of cocaine reward. Several proteoform changes occurred in the ventral tegmental area after combined cocaine and E2 treatments, with the most numerous proteoform alterations on myelin basic protein, indicating possible changes in white matter structure. There were also changes in histone H4, protein phosphatase inhibitors, cholecystokinin, and calmodulin proteoforms. These observations provide insight into estrogen signaling in the brain and may guide new approaches to treating women with cocaine use disorder.


Asunto(s)
Encéfalo/efectos de los fármacos , Cocaína/farmacología , Estradiol/farmacología , Proteoma/metabolismo , Proteómica/métodos , Animales , Encéfalo/metabolismo , Condicionamiento Clásico/efectos de los fármacos , Dopamina/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Estrógenos/farmacología , Femenino , Ratones Endogámicos C57BL , Ovariectomía , Recompensa , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
16.
J Biol Chem ; 294(33): 12459-12471, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31248990

RESUMEN

NSD2 is a histone methyltransferase that specifically dimethylates histone H3 lysine 36 (H3K36me2), a modification associated with gene activation. Dramatic overexpression of NSD2 in t(4;14) multiple myeloma (MM) and an activating mutation of NSD2 discovered in acute lymphoblastic leukemia are significantly associated with altered gene activation, transcription, and DNA damage repair. The partner proteins through which NSD2 may influence critical cellular processes remain poorly defined. In this study, we utilized proximity-based labeling (BioID) combined with label-free quantitative MS to identify high confidence NSD2 interacting partners in MM cells. The top 24 proteins identified were involved in maintaining chromatin structure, transcriptional regulation, RNA pre-spliceosome assembly, and DNA damage. Among these, an important DNA damage regulator, poly(ADP-ribose) polymerase 1 (PARP1), was discovered. PARP1 and NSD2 have been found to be recruited to DNA double strand breaks upon damage and H3K36me2 marks are enriched at damage sites. We demonstrate that PARP1 regulates NSD2 via PARylation upon oxidative stress. In vitro assays suggest the PARylation significantly reduces NSD2 histone methyltransferase activity. Furthermore, PARylation of NSD2 inhibits its ability to bind to nucleosomes and further get recruited at NSD2-regulated genes, suggesting PARP1 regulates NSD2 localization and H3K36me2 balance. This work provides clear evidence of cross-talk between PARylation and histone methylation and offers new directions to characterize NSD2 function in DNA damage response, transcriptional regulation, and other pathways.


Asunto(s)
Cromatina/enzimología , N-Metiltransferasa de Histona-Lisina/metabolismo , Mieloma Múltiple/enzimología , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli ADP Ribosilación , Proteínas Represoras/metabolismo , Línea Celular Tumoral , Cromatina/genética , Cromatina/patología , Roturas del ADN de Doble Cadena , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Proteínas de Neoplasias/genética , Estrés Oxidativo/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteínas Represoras/genética
17.
Proteomics ; 19(10): e1800361, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31050378

RESUMEN

A proteoform is a defined form of a protein derived from a given gene with a specific amino acid sequence and localized post-translational modifications. In top-down proteomic analyses, proteoforms are identified and quantified through mass spectrometric analysis of intact proteins. Recent technological developments have enabled comprehensive proteoform analyses in complex samples, and an increasing number of laboratories are adopting top-down proteomic workflows. In this review, some recent advances are outlined and current challenges and future directions for the field are discussed.


Asunto(s)
Aminoácidos/análisis , Espectrometría de Masas , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Proteómica/métodos , Animales , Biología Computacional , Electroforesis Capilar , Humanos , Lenguajes de Programación , Reproducibilidad de los Resultados , Programas Informáticos
18.
Mol Cell Proteomics ; 18(4): 796-805, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30647073

RESUMEN

Within the last several years, top-down proteomics has emerged as a high throughput technique for protein and proteoform identification. This technique has the potential to identify and characterize thousands of proteoforms within a single study, but the absence of accurate false discovery rate (FDR) estimation could hinder the adoption and consistency of top-down proteomics in the future. In automated identification and characterization of proteoforms, FDR calculation strongly depends on the context of the search. The context includes MS data quality, the database being interrogated, the search engine, and the parameters of the search. Particular to top-down proteomics-there are four molecular levels of study: proteoform spectral match (PrSM), protein, isoform, and proteoform. Here, a context-dependent framework for calculating an accurate FDR at each level was designed, implemented, and validated against a manually curated training set with 546 confirmed proteoforms. We examined several search contexts and found that an FDR calculated at the PrSM level under-reported the true FDR at the protein level by an average of 24-fold. We present a new open-source tool, the TDCD_FDR_Calculator, which provides a scalable, context-dependent FDR calculation that can be applied post-search to enhance the quality of results in top-down proteomics from any search engine.


Asunto(s)
Proteómica/métodos , Algoritmos , Bases de Datos de Proteínas , Humanos , Isoformas de Proteínas/metabolismo , Reproducibilidad de los Resultados
19.
Anal Chem ; 90(14): 8553-8560, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29924586

RESUMEN

High-throughput top-down proteomic experiments directly identify proteoforms in complex mixtures, making high quality tandem mass spectra necessary to deeply characterize proteins with many sources of variation. Collision-based dissociation methods offer expedient data acquisition but often fail to extensively fragment proteoforms for thorough analysis. Electron-driven dissociation methods are a popular alternative approach, especially for precursor ions with high charge density. Combining infrared photoactivation concurrent with electron transfer dissociation (ETD) reactions, i.e., activated ion ETD (AI-ETD), can significantly improve ETD characterization of intact proteins, but benefits of AI-ETD have yet to be quantified in high-throughput top-down proteomics. Here, we report the first application of AI-ETD to LC-MS/MS characterization of intact proteins (<20 kDa), highlighting improved proteoform identification the method offers over higher energy-collisional dissociation (HCD), standard ETD, and ETD followed by supplemental HCD activation (EThcD). We identified 935 proteoforms from 295 proteins from human colorectal cancer cell line HCT116 using AI-ETD compared to 1014 proteoforms, 915 proteoforms, and 871 proteoforms with HCD, ETD, and EThcD, respectively. Importantly, AI-ETD outperformed each of the three other methods in MS/MS success rates and spectral quality metrics (e.g., sequence coverage achieved and proteoform characterization scores). In all, this four-method analysis offers the most extensive comparisons to date and demonstrates that AI-ETD both increases identifications over other ETD methods and improves proteoform characterization via higher sequence coverage, positioning it as a premier method for high-throughput top-down proteomics.


Asunto(s)
Neoplasias Colorrectales/patología , Proteínas/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Línea Celular Tumoral , Cromatografía Liquida/economía , Cromatografía Liquida/métodos , Neoplasias Colorrectales/química , Transporte de Electrón , Electrones , Ensayos Analíticos de Alto Rendimiento/economía , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Procesos Fotoquímicos , Procesamiento Proteico-Postraduccional , Proteómica/economía , Espectrometría de Masas en Tándem/economía
20.
Proc Natl Acad Sci U S A ; 115(16): 4140-4145, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610327

RESUMEN

Mutations of the KRAS gene are found in human cancers with high frequency and result in the constitutive activation of its protein products. This leads to aberrant regulation of downstream pathways, promoting cell survival, proliferation, and tumorigenesis that drive cancer progression and negatively affect treatment outcomes. Here, we describe a workflow that can detect and quantify mutation-specific consequences of KRAS biochemistry, namely linked changes in posttranslational modifications (PTMs). We combined immunoaffinity enrichment with detection by top-down mass spectrometry to discover and quantify proteoforms with or without the Gly13Asp mutation (G13D) specifically in the KRAS4b isoform. The workflow was applied first to isogenic KRAS colorectal cancer (CRC) cell lines and then to patient CRC tumors with matching KRAS genotypes. In two cellular models, a direct link between the knockout of the mutant G13D allele and the complete nitrosylation of cysteine 118 of the remaining WT KRAS4b was observed. Analysis of tumor samples quantified the percentage of mutant KRAS4b actually present in cancer tissue and identified major differences in the levels of C-terminal carboxymethylation, a modification critical for membrane association. These data from CRC cells and human tumors suggest mechanisms of posttranslational regulation that are highly context-dependent and which lead to preferential production of specific KRAS4b proteoforms.


Asunto(s)
Neoplasias Colorrectales/enzimología , Mutación Missense , Proteínas de Neoplasias/análisis , Mutación Puntual , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/análisis , Secuencia de Aminoácidos , Línea Celular Tumoral , Membrana Celular/metabolismo , Cromatografía Liquida , Neoplasias Colorrectales/genética , Cisteína/química , Humanos , Metilación , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/aislamiento & purificación , Nitrosación , Prenilación , Conformación Proteica , Proteómica/métodos , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/aislamiento & purificación , Proteínas Recombinantes/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA