Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neural Dev ; 10: 13, 2015 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-25934499

RESUMEN

BACKGROUND: Chromatin-modifying complexes have key roles in regulating various aspects of neural stem cell biology, including self-renewal and neurogenesis. The methyl binding domain 3/nucleosome remodelling and deacetylation (MBD3/NuRD) co-repressor complex facilitates lineage commitment of pluripotent cells in early mouse embryos and is important for stem cell homeostasis in blood and skin, but its function in neurogenesis had not been described. Here, we show for the first time that MBD3/NuRD function is essential for normal neurogenesis in mice. RESULTS: Deletion of MBD3, a structural component of the NuRD complex, in the developing mouse central nervous system resulted in reduced cortical thickness, defects in the proper specification of cortical projection neuron subtypes and neonatal lethality. These phenotypes are due to alterations in PAX6+ apical progenitor cell outputs, as well as aberrant terminal neuronal differentiation programmes of cortical plate neurons. Normal numbers of PAX6+ apical neural progenitor cells were generated in the MBD3/NuRD-mutant cortex; however, the PAX6+ apical progenitor cells generate EOMES+ basal progenitor cells in reduced numbers. Cortical progenitor cells lacking MBD3/NuRD activity generate neurons that express both deep- and upper-layer markers. Using laser capture microdissection, gene expression profiling and chromatin immunoprecipitation, we provide evidence that MBD3/NuRD functions to control gene expression patterns during neural development. CONCLUSIONS: Our data suggest that although MBD3/NuRD is not required for neural stem cell lineage commitment, it is required to repress inappropriate transcription in both progenitor cells and neurons to facilitate appropriate cell lineage choice and differentiation programmes.


Asunto(s)
Corteza Cerebral/citología , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/fisiología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Factores de Transcripción/fisiología , Animales , Recuento de Células , Ciclo Celular , Linaje de la Célula , Corteza Cerebral/anomalías , Corteza Cerebral/embriología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas del Ojo/fisiología , Perfilación de la Expresión Génica , Proteínas de Homeodominio/fisiología , Ratones , Ratones Noqueados , Neurogénesis/genética , Neuronas/clasificación , Neuronas/citología , Nucleosomas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/fisiología , Proteínas Represoras/fisiología , Proteínas de Dominio T Box/análisis , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcripción Genética , Transgenes
2.
PLoS One ; 8(9): e74102, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069272

RESUMEN

TOX3 maps to 16q12, a region commonly lost in breast cancers and recently implicated in the risk of developing breast cancer. However, not much is known of the role of TOX3 itself in breast cancer biology. This is the first study to determine the importance of TOX3 mutations in breast cancers. We screened TOX3 for mutations in 133 breast tumours and identified four mutations (three missense, one in-frame deletion of 30 base pairs) in six primary tumours, corresponding to an overall mutation frequency of 4.5%. One potentially deleterious missense mutation in exon 3 (Leu129Phe) was identified in one tumour (genomic DNA and cDNA). Whilst copy number changes of 16q12 are common in breast cancer, our data show that mutations of TOX3 are present at low frequency in tumours. Our results support that TOX3 should be further investigated to elucidate its role in breast cancer biology.


Asunto(s)
Neoplasias de la Mama/genética , Mutación , Receptores de Progesterona/genética , Proteínas Reguladoras de la Apoptosis , Estudios de Casos y Controles , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Proteínas del Grupo de Alta Movilidad , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Transactivadores
3.
Cell Stem Cell ; 10(5): 583-94, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22560079

RESUMEN

Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells.


Asunto(s)
Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Heterogeneidad Genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Ratones , Ratones Noqueados , Factores de Transcripción/genética
4.
EMBO J ; 31(3): 593-605, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139358

RESUMEN

Pluripotent cells possess the ability to differentiate into any cell type. Commitment to differentiate into specific lineages requires strict control of gene expression to coordinate the downregulation of lineage inappropriate genes while enabling the expression of lineage-specific genes. The nucleosome remodelling and deacetylation complex (NuRD) is required for lineage commitment of pluripotent cells; however, the mechanism through which it exerts this effect has not been defined. Here, we show that histone deacetylation by NuRD specifies recruitment for Polycomb Repressive Complex 2 (PRC2) in embryonic stem (ES) cells. NuRD-mediated deacetylation of histone H3K27 enables PRC2 recruitment and subsequent H3K27 trimethylation at NuRD target promoters. We propose a gene-specific mechanism for modulating expression of transcriptionally poised genes whereby NuRD controls the balance between acetylation and methylation of histones, thereby precisely directing the expression of genes critical for embryonic development.


Asunto(s)
Silenciador del Gen , Histonas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/fisiología , Proteínas Represoras/metabolismo , Acetilación , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Proteínas del Grupo Polycomb , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
PLoS One ; 4(1): e4315, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19177165

RESUMEN

BACKGROUND: The precise molecular changes that occur when a neural stem (NS) cell switches from a programme of self-renewal to commit towards a specific lineage are not currently well understood. However it is clear that control of gene expression plays an important role in this process. DNA methylation, a mark of transcriptionally silent chromatin, has similarly been shown to play important roles in neural cell fate commitment in vivo. While DNA methylation is known to play important roles in neural specification during embryonic development, no such role has been shown for any of the methyl-CpG binding proteins (Mecps) in mice. METHODOLOGY/PRINCIPAL FINDINGS: To explore the role of DNA methylation in neural cell fate decisions, we have investigated the function of Mecps in mouse development and in neural stem cell derivation, maintenance, and differentiation. In order to test whether the absence of phenotype in singly-mutant animals could be due to functional redundancy between Mecps, we created mice and neural stem cells simultaneously lacking Mecp2, Mbd2 and Zbtb33. No evidence for functional redundancy between these genes in embryonic development or in the derivation or maintenance of neural stem cells in culture was detectable. However evidence for a defect in neuronal commitment of triple knockout NS cells was found. CONCLUSIONS/SIGNIFICANCE: Although DNA methylation is indispensable for mammalian embryonic development, we show that simultaneous deficiency of three methyl-CpG binding proteins genes is compatible with apparently normal mouse embryogenesis. Nevertheless, we provide genetic evidence for redundancy of function between methyl-CpG binding proteins in postnatal mice.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Desarrollo Embrionario , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/citología , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Línea Celular , Ratones , Ratones Noqueados , Neuronas/metabolismo , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...