Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 441: 117-130, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32599121

RESUMEN

The pulvinar is a higher-order thalamic relay and a central component of the extrageniculate visual pathway, with input from the superior colliculus and visual cortex and output to all of visual cortex. Rodent pulvinar, more commonly called the lateral posterior nucleus (LP), consists of three highly-conserved subdivisions, and offers the advantage of simplicity in its study compared to more subdivided primate pulvinar. Little is known about receptive field properties of LP, let alone whether functional differences exist between different LP subdivisions, making it difficult to understand what visual information is relayed and what kinds of computations the pulvinar might support. Here, we characterized single-cell response properties in two V1 recipient subdivisions of rat pulvinar, the rostromedial (LPrm) and lateral (LPl), and found that a fourth of the cells were selective for orientation, compared to half in V1, and that LP tuning widths were significantly broader. Response latencies were also significantly longer and preferred size more than three times larger on average than in V1; the latter suggesting pulvinar as a source of spatial context to V1. Between subdivisons, LPl cells preferred higher temporal frequencies, whereas LPrm showed a greater degree of direction selectivity and pattern motion detection. Taken together with known differences in connectivity patterns, these results suggest two separate visual feature processing channels in the pulvinar, one in LPl related to higher speed processing which likely derives from superior colliculus input, and the other in LPrm for motion processing derived through input from visual cortex. SIGNIFICANCE STATEMENT: The pulvinar has a perplexing role in visual cognition as no clear link has been found between the functional properties of its neurons and behavioral deficits that arise when it is damaged. The pulvinar, called the lateral posterior nucleus (LP) in rats, is a higher order thalamic relay with input from the superior colliculus and visual cortex and output to all of visual cortex. By characterizing single-cell response properties in anatomically distinct subdivisions we found two separate visual feature processing channels in the pulvinar, one in lateral LP related to higher speed processing which likely derives from superior colliculus input, and the other in rostromedial LP for motion processing derived through input from visual cortex.


Asunto(s)
Pulvinar , Corteza Visual , Animales , Núcleos Talámicos Laterales , Estimulación Luminosa , Ratas , Colículos Superiores , Vías Visuales
2.
J Comp Neurol ; 527(3): 589-599, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29441578

RESUMEN

The basal forebrain provides cholinergic inputs to primary visual cortex (V1) that play a key modulatory role on visual function. While basal forebrain afferents terminate in the infragranular layers of V1, acetylcholine is delivered to more superficial layers through volume transmission. Nevertheless, direct synaptic contact in deep layers 5 and 6 may provide a more immediate effect on V1 modulation. Using helper viruses with cell type specific promoters to target retrograde infection of pseudotyped and genetically modified rabies virus evidence was found for direct synaptic input onto V1 inhibitory neurons. These inputs were similar in number to geniculocortical inputs and, therefore, considered robust. In contrast, while clear evidence for dorsal lateral geniculate nucleus input to V1 excitatory neurons was found, there was no evidence of direct synaptic input from the basal forebrain. These results suggest a direct and more immediate influence of the basal forebrain on local V1 inhibition.


Asunto(s)
Prosencéfalo Basal/citología , Cuerpos Geniculados/citología , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Corteza Visual/citología , Vías Visuales/citología , Animales , Prosencéfalo Basal/química , Prosencéfalo Basal/fisiología , Femenino , Cuerpos Geniculados/química , Cuerpos Geniculados/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Visual/química , Corteza Visual/fisiología , Vías Visuales/química , Vías Visuales/fisiología
3.
J Neurosci ; 38(50): 10709-10724, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30396913

RESUMEN

To combat retinal degeneration, healthy fetal retinal sheets have been successfully transplanted into both rodent models and humans, with synaptic connectivity between transplant and degenerated host retina having been confirmed. In rodent studies, transplants have been shown to restore responses to flashes of light in a region of the superior colliculus corresponding to the location of the transplant in the host retina. To determine the quality and detail of visual information provided by the transplant, visual responsivity was studied here at the level of visual cortex where higher visual perception is processed. For our model, we used the transgenic Rho-S334ter line-3 rat (both sexes), which loses photoreceptors at an early age and is effectively blind at postnatal day 30. These rats received fetal retinal sheet transplants in one eye between 24 and 40 d of age. Three to 10 months following surgery, visually responsive neurons were found in regions of primary visual cortex matching the transplanted region of the retina that were as highly selective as normal rat to stimulus orientation, size, contrast, and spatial and temporal frequencies. Conversely, we found that selective response properties were largely absent in nontransplanted line-3 rats. Our data show that fetal retinal sheet transplants can result in remarkably normal visual function in visual cortex of rats with a degenerated host retina and represents a critical step toward developing an effective remedy for the visually impaired human population.SIGNIFICANCE STATEMENT Age-related macular degeneration and retinitis pigmentosa lead to profound vision loss in millions of people worldwide. Many patients lose both retinal pigment epithelium and photoreceptors. Hence, there is a great demand for the development of efficient techniques that allow for long-term vision restoration. In this study, we transplanted dissected fetal retinal sheets, which can differentiate into photoreceptors and integrate with the host retina of rats with severe retinal degeneration. Remarkably, we show that transplants generated visual responses in cortex similar in quality to normal rats. Furthermore, transplants preserved connectivity within visual cortex and the retinal relay from the lateral geniculate nucleus to visual cortex, supporting their potential application in curing vision loss associated with retinal degeneration.


Asunto(s)
Potenciales Evocados Visuales/fisiología , Retina/trasplante , Degeneración Retiniana/fisiopatología , Degeneración Retiniana/terapia , Índice de Severidad de la Enfermedad , Corteza Visual/fisiología , Animales , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Ratas , Ratas Long-Evans , Ratas Transgénicas , Degeneración Retiniana/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...